[1] 国家心血管病中心. 中国心血管健康与疾病报告2020[J]. 心肺血管病杂志, 2021, 40(9): 885-889. [2] Kalluri R, LeBleu V S. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478): eaau6977. [3] Wang C X, Zhang C C, Liu L X, et al. Macrophage-derived mir-155-containing exosomes suppress fibroblast proliferation and promote fibroblast inflammation during cardiac injury[J]. Mol Ther, 2017, 25(1): 192-204. [4] Liu S J, Chen J, Shi J, et al. M1-like macrophage-derived exosomes suppress angiogenesis and exacerbate cardiac dysfunction in a myocardial infarction microenvironment[J]. Basic Res Cardiol, 2020, 115(2): 22. [5] Liu H B, Zhang Y M, Yuan J, et al. Dendritic cell-derived exosomal miR-494-3p promotes angiogenesis following myocardial infarction[J]. Int J Mol Med, 2021, 47(1): 315-325. [6] 孙硕, 康品方, 张恒. 外泌体miRNA在心血管疾病中的研究进展[J]. 心血管病学进展, 2021, 42(3): 224-227. [7] Aheget H, Mazini L, Martin F, et al. Exosomes: their role in pathogenesis, diagnosis and treatment of diseases[J]. Cancers, 2020, 13(1): 84. [8] Mori M A, Ludwig R G, Garcia-Martin R, et al. Extracellular miRNAs: from biomarkers to mediators of physiology and disease[J]. Cell Metab, 2019, 30(4): 656-673. [9] Singla D K. Stem cells and exosomes in cardiac repair[J]. Curr Opin Pharmacol, 2016, 27: 19-23. [10] Mir R, Elfaki I, Khullar N, et al. Role of selected miRNAs as diagnostic and prognostic biomarkers in cardiovascular diseases, including coronary artery disease, myocardial infarction and atherosclerosis[J]. J Cardiovasc Dev Dis, 2021, 8(2): 22. [11] Schulte C, Karakas M, Zeller T. MicroRNAs in cardiovascular disease-clinical application[J]. Clin Chem Lab Med, 2017, 55(5): 687-704. [12] Shao L B, Zhang Y, Lan B B, et al. MiRNA-sequence indicates that mesenchymal stem cells and exosomes have similar mechanism to enhance cardiac repair[J]. Biomed Res Int, 2017, 2017: 4150705. [13] Peng Y, Zhao J L, Peng Z Y, et al. Exosomal miR-25-3p from mesenchymal stem cells alleviates myocardial infarction by targeting pro-apoptotic proteins and EZH2[J]. Cell Death Dis, 2020, 11(5): 317. [14] Cheng H, Chang S F, Xu R D, et al. Hypoxia-challenged MSC-derived exosomes deliver miR-210 to attenuate post-infarction cardiac apoptosis[J]. Stem Cell Res Ther, 2020, 11(1): 224. [15] Luther K M, Haar L, McGuinness M, et al. Exosomal miR-21a-5p mediates cardioprotection by mesenchymal stem cells[J]. J Mol Cell Cardiol, 2018, 11: 125-137. [16] Zhu L P, Tian T, Wang J Y, et al. Hypoxia-elicited mesenchymal stem cell-derived exosomes facilitates cardiac repair through miR-125b-mediated prevention of cell death in myocardial infarction[J]. Theranostics, 2018, 8(22): 6163-6177. [17] Hao C S, Lu Z R, Zhao Y Y, et al. Overexpression of GATA4 enhances the antiapoptotic effect of exosomes secreted from cardiac colony-forming unit fibroblasts via miRNA221-mediated targeting of the PTEN/PI3K/AKT signaling pathway[J]. Stem Cell Res Ther, 2020, 11(1): 251. [18] Ning W L, Li S H, Yang W G, et al. Blocking exosomal miRNA-153-3p derived from bone marrow mesenchymal stem cells ameliorates hypoxia-induced myocardial and microvascular damage by targeting the ANGPT1-mediated VEGF/PI3k/Akt/eNOS pathway[J]. Cell Signal, 2021, 77: 109812. [19] Long R, Gao L, Li Y P, et al. M2 macrophage-derived exosomes carry miR-1271-5p to alleviate cardiac injury in acute myocardial infarction through down-regulating SOX6[J]. Mol Immunol, 2021, 136: 26-35. [20] Wang B, Cao C, Han D J, et al. Dysregulation of miR-342-3p in plasma exosomes derived from convalescent AMI patients and its consequences on cardiac repair[J]. Biomed Pharmacother, 2021, 142: 112056. [21] Geng T, Song Z Y, Xing J X, et al. Exosome derived from coronary serum of patients with myocardial infarction promotes angiogenesis through the miRNA-143/IGF-IR pathway[J]. Int J Nanomedicine, 2020, 15: 2647-2658. [22] Gao L, Mei S Y, Zhang S N, et al. Cardio-renal exosomes in myocardial infarction serum regulate proangiogenic paracrine signaling in adipose mesenchymal stem cells[J]. Theranostics, 2020, 10(3): 1060-1073. [23] Liao Z F, Chen Y L, Duan C C, et al. Cardiac telocytes inhibit cardiac microvascular endothelial cell apoptosis through exosomal miRNA-21-5p-targeted cdip1 silencing to improve angiogenesis following myocardial infarction[J]. Theranostics, 2021, 11(1): 268-291. [24] Zhu W W, Sun L, Zhao P C, et al. Macrophage migration inhibitory factor facilitates the therapeutic efficacy of mesenchymal stem cells derived exosomes in acute myocardial infarction through upregulating miR-133a-3p[J]. J Nanobiotechnology, 2021, 19(1): 61. [25] Kang J Y, Park H, Kim H, et al. Human peripheral blood-derived exosomes for microRNA delivery[J]. Int J Mol Med, 2019, 43(6): 2319-2328. [26] Pan J J, Alimujiang M, Chen Q Y, et al. Exosomes derived from miR-146a-modified adipose-derived stem cells attenuate acute myocardial infarction-induced myocardial damage via downregulation of early growth response factor 1[J]. J Cell Biochem, 2019, 120(3): 4433-4443. [27] Ke X, Yang R F, Wu F, et al. Exosomal miR-218-5p/miR-363-3p from endothelial progenitor cells ameliorate myocardial infarction by targeting the p53/JMY signaling pathway[J]. Oxid Med Cell Longev, 2021, 2021: 5529430. [28] Vaskova E, Ikeda G, Tada Y, et al. Sacubitril/valsartan improves cardiac function and decreases myocardial fibrosis via downregulation of exosomal miR-181a in a rodent chronic myocardial infarction model[J]. J Am Heart Assoc, 2020, 9(13): e015640. [29] Wei Z L, Qiao S H, Zhao J X, et al. MiRNA-181a over-expression in mesenchymal stem cell-derived exosomes influenced inflammatory response after myocardial ischemia-reperfusion injury[J]. Life Sci, 2019, 232: 116632. [30] Zhao J X, Li X L, Hu J X, et al. Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization[J]. Cardiovasc Res, 2019, 115(7): 1205-1216. [31] Liu H Y, Yu L F, Zhou T G, et al. Lipopolysaccharide-stimulated bone marrow mesenchymal stem cells-derived exosomes inhibit H2O2-induced cardiomyocyte inflammation and oxidative stress via regulating miR-181a-5p/ATF2 axis[J]. Eur Rev Med Pharmacol Sci, 2020, 24(19): 10069-10077. [32] Chen S Y, Fang H C, Liu R Z, et al. MiR-6718-5p and miR-4329 can be used as potential biomarkers for acute myocardial infarction[J]. J Card Surg, 2021, 36(10): 3721-3728. [33] Ling H, Guo Z Y, Shi Y F, et al. Serum exosomal microRNA-21, microRNA-126, and PTEN are novel biomarkers for diagnosis of acute coronary syndrome[J]. Front Physiol, 2020, 11: 654. [34] Su J, Li J Y, Yu Q L, et al. Exosomal miRNAs as potential biomarkers for acute myocardial infarction[J]. IUBMB Life, 2020, 72(3): 384-400. [35] Guo M, Li R, Yang L F, et al. Evaluation of exosomal miRNAs as potential diagnostic biomarkers for acute myocardial infarction using next-generation sequencing[J]. Ann Transl Med, 2021, 9(3): 219. [36] Zhao X X, Jia Y P, Chen H Z, et al. Plasma-derived exosomal miR-183 associates with protein kinase activity and may serve as a novel predictive biomarker of myocardial ischemic injury[J]. Exp Ther Med, 2019, 18(1): 179-187. [37] Cortez-Dias N, Costa M C, Carrilho-Ferreira P, et al. Circulating miR-122-5p/miR-133b ratio is a specific early prognostic biomarker in acute myocardial infarction[J]. Circ J, 2016, 80(10): 2183-2191. [38] Chachques J C, Gardin C, Lila N, et al. Elastomeric cardiowrap scaffolds functionalized with mesenchymal stem cells-derived exosomes induce a positive modulation in the inflammatory and wound healing response of mesenchymal stem cell and macrophage[J]. Biomedicines, 2021, 9(7): 824. [39] Huang C Y,Neupane Y R, Lim X C, et al.Extracellular vesicles in cardiovascular disease[J]. Adv Clin Chem, 2021, 103: 47-95. |