[1]Nordengrün M, Michalik S, Vlker U, et al. The quest for bacterial allergens[J]. Int J Med Microbiol, 2018, 308(6):738-750.
[2]Murrison L B, Brandt E B, Myers J B, et al. Environmental exposures and mechanisms in allergy and asthma development[J]. J Clin Invest, 2019, 129(4):1504-1515.
[3]Li C D, Du X N, Huang Q, et al. Repeated exposure to inactivated Streptococcus pneumoniae induces asthma-like pathological changes in mice in the presence of IL-33[J]. Cell Immunol, 2021, 369: 104438.
[4]Peng D, Shi Y F, Pang J, et al. Early-life infection of the airways with Streptococcus pneumoniae exacerbates HDM-induced asthma in a murine model[J]. Cell Immunol, 2022, 376: 104536.
[5]Renz H, Skevaki C. Early life microbial exposures and allergy risks: opportunities for prevention[J]. Nat Rev Immunol, 2021, 21(3):177-191.
[6]Renz H, Herz U. The bidirectional capacity of bacterial antigens to modulate allergy and asthma[J]. Eur Respir J, 2002, 19(1):158-171.
[7]Shi T, Ooi Y, Zaw E M, et al. Association between respiratory syncytial virus-associated acute lower respiratory infection in early life and recurrent wheeze and asthma in later childhood[J]. J Infect Dis, 2020, 222(Suppl 7):S628-S633.
[8]Culley F J, Pollott J, Openshaw P J M. Age at first viral infection determines the pattern of T cell-mediated disease during reinfection in adulthood[J]. J Exp Med, 2002, 196(10):1381-1386.
[9]Bisgaard H, Hermansen M N, Buchvald F, et al. Childhood asthma after bacterial colonization of the airway in neonates[J]. N Engl J Med, 2007, 357(15):1487-1495.
[10]Tersjrvi J T, Toivonen L, Vuononvirta J, et al. TLR4 polymorphism, nasopharyngeal bacterial colonization, and the development of childhood asthma: a prospective birth-cohort study in finnish children[J]. Genes (Basel), 2020, 11(7):768.
[11]Weiser J N, Ferreira D M, Paton J C. Streptococcus pneumoniae: transmission, colonization and invasion[J]. Nat Rev Microbiol, 2018, 16(6):355-367.
[12]Larsen S B, Cowley C J, Sajjath S M, et al. Establishment, maintenance, and recall of inflammatory memory[J]. Cell Stem Cell, 2021, 28(10):1758-1774.e8.
[13]Liew F Y, Girard J P, Turnquist H R. Interleukin-33 in health and disease[J]. Nat Rev Immunol, 2016, 16(11):676-689.
[14]Alvarez F, Fritz J H, Piccirillo C A. Pleiotropic effects of IL-33 on CD4+ T cell differentiation and effector functions[J]. Front Immunol, 2019, 10: 522.
[15]Naik S, Larsen S B, Gomez N C, et al. Inflammatory memory sensitizes skin epithelial stem cells to tissue damage[J]. Nature, 2017, 550(7677):475-480.
[16]Kim C W, Yoo H J, Park J H, et al. Exogenous interleukin-33 contributes to protective immunity via cytotoxic T-cell priming against mucosal influenza viral infection[J]. Viruses, 2019, 11(9):840.
[17]Lei Y, Boinapally V, Zoltowska A, et al. Vaccination against IL-33 inhibits airway hyperresponsiveness and inflammation in a house dust mite model of asthma[J]. PLoS One, 2015, 10(7):e0133774.
[18]Hung L Y, Tanaka Y, Herbine K, et al. Cellular context of IL-33 expression dictates impact on anti-helminth immunity[J]. Sci Immunol, 2020, 5(53):eabc6259.
|