[1]Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263.
[2]陈明扬, 蔡紫庭, 薛鹏, 等. 人工智能在肿瘤研究和临床中的应用[J]. 基础医学与临床, 2022, 42(11): 1637-1643.
[3]Feng Y M, Long Y H, Wang H, et al. Benchmarking machine learning methods for synthetic lethality prediction in cancer[J]. Nat Commun, 2024, 15(1): 9058.
[4]杜明月, 李学广, 左珊如, 等. 人工智能在癌诊断和治疗中的应用进展[J]. 基础医学与临床, 2022, 42(8): 1297-1301.
[5]Huang S G, Yang J, Shen N, et al. Artificial intelligence in lung cancer diagnosis and prognosis: current application and future perspective[J]. Semin Cancer Biol, 2023, 89: 30-37.
[6]谭洪, 林圣庚, 熊毅. 人工智能赋能癌症协同药物组合预测的现状与挑战[J]. 中国癌症杂志, 2024, 34(9): 807-813.
[7]Singh M, Kumar A, Khanna N N, et al. Artificial intelligence for cardiovascular disease risk assessment in personalised framework: a scoping review[J]. EClinicalMedicine, 2024, 73: 102660.
[8]Niazi M K K, Parwani A V, Gurcan M N. Digital pathology and artificial intelligence[J]. Lancet Oncol, 2019, 20(5): e253-e261.
[9]Sempionatto J R, Lasalde-Ramírez J A, Mahato K, et al. Wearable chemical sensors for biomarker discovery in the omics era[J]. Nat Rev Chem, 2022, 6(12): 899-915.
[10]Steyaert S, Pizurica M, Nagaraj D, et al. Multimodal data fusion for cancer biomarker discovery with deep learning[J]. Nat Mach Intell, 2023, 5(4): 351-362.
[11]Sufyan M, Shokat Z, Ashfaq U A. Artificial intelligence in cancer diagnosis and therapy: current status and future perspective[J]. Comput Biol Med, 2023, 165: 107356.
[12]Zhen J H, Li J, Liao F, et al. Development and validation of machine learning models for young-onset colorectal cancer risk stratification[J]. NPJ Precis Oncol, 2024, 8(1): 239.
[13]Uwimana A, Gnecco G, Riccaboni M. Artificial intelligence for breast cancer detection and its health technology assessment: a scoping review[J]. Comput Biol Med, 2025, 184: 109391.
[14]Shah S A H, Shah S T H, Khaled R, et al. Explainable AI-based skin cancer detection using CNN, particle swarm optimization and machine learning[J]. J Imaging, 2024, 10(12): 332.
[15]Sapaico-Alberto A F, Olaya-Cotera S, Flores-Castañeda R O. Analysis of the use of digital technologies in the preliminary diagnosis of dermatological diseases: a systematic review[J]. Arch Dermatol Res, 2024, 317(1): 146.
[16]Saha S Y, Ghosh S, Ghosh S, et al. Unraveling the complexities of colorectal cancer and its promising therapies-an updated review[J]. Int Immunopharmacol, 2024, 143(Pt 1): 113325.
[17]Gao Y, Ventura-Diaz S, Wang X, et al. An explainable longitudinal multi-modal fusion model for predicting neoadjuvant therapy response in women with breast cancer[J]. Nat Commun, 2024, 15(1): 9613.
[18]Chen M, Copley S J, Viola P, et al. Radiomics and artificial intelligence for precision medicine in lung cancer treatment[J]. Semin Cancer Biol, 2023, 93: 97-113.
[19]甘武田, 应延辰,全红,等. 肺癌放射治疗中人工智能的应用进展[J]. 中华肿瘤防治杂志, 2021, 28 (18): 1428-1432.
[20]Olawade D B, Clement David-Olawade A, Adereni T, et al. Integrating AI into cancer immunotherapy-a narrative review of current applications and future directions[J]. Diseases, 2025, 13(14): 24.
[21]Wang J H, Deek M P, Mendes A A, et al. Validation of an artificial intelligence-based prognostic biomarker in patients with oligometastatic castration-sensitive prostate cancer[J]. Radiother Oncol, 2025, 202: 110618.
[22]Vickers A J, McSweeney D M, Choudhury A, et al. The prognostic significance of sarcopenia in patients treated with definitive radiotherapy: a systematic review[J]. Radiother Oncol, 2025, 203: 110663.
[23]Yang X L, Qiu H, Wang L Y, et al. Predicting colorectal cancer survival using time-to-event machine learning: retrospective cohort study[J]. J Med Internet Res, 2023, 25: e44417-e44428.
[24]Germer S, Rudolph C, Labohm L, et al. Survival analysis for lung cancer patients: a comparison of cox regression and machine learning models[J]. Int J Med Inform, 2024, 191: 105607.
[25]Wang W, Li X, Yu H, et al. Machine learning model for early prediction of survival in gallbladder adenocarcinoma: a comparison study[J]. SLAS Technol, 2024, 29(6): 100220.
[26]Lee E H, Han M, Wright J, et al. An international study presenting a federated learning AI platform for pediatric brain tumors[J]. Nat Commun, 2024, 15(1): 7615.
[27]Ferber D, Wölflein G, Wiest I C, et al. In-context learning enables multimodal large language models to classify cancer pathology images[J]. Nat Commun, 2024, 15(1): 10104.
[28]Wei Y, Yang M Y, Zhang M, et al. Focal liver lesion diagnosis with deep learning and multistage CT imaging[J]. Nat Commun, 2024, 15(1): 7040.
[29]Zeng S, Wang X L, Yang H. Radiomics and radiogenomics: extracting more information from medical images for the diagnosis and prognostic prediction of ovarian cancer[J]. Mil Med Res, 2024, 11(1): 77.
[30]Alashban Y. Breast cancer detection and classification with digital breast tomosynthesis: a two-stage deep learning approach[J]. Diagn Interv Radiol, 2025, 31(3): 206-214.
[31]Huang Y N, Yao Z, Li L L, et al. Deep learning radiopathomics based on preoperative US images and biopsy whole slide images can distinguish between luminal and non-luminal tumors in early-stage breast cancers[J]. EBioMedicine, 2023, 94: 104706.
[32]Daniel R, Jones H, Gregory J W, et al. Predicting type 1 diabetes in children using electronic health records in primary care in the UK: development and validation of a machine-learning algorithm[J]. Lancet Digit Health, 2024, 6(6): e386-e395.
[33]Murali L, Gopakumar G, Viswanathan D M, et al. Towards electronic health record-based medical knowledge graph construction, completion, and applications: a literature study[J]. J Biomed Inform, 2023, 143: 104403.
[34]Soman K, Nelson C A, Cerono G, et al. Time-aware embeddings of clinical data using a knowledge graph[J]. Pac Symp Biocomput, 2023, 28: 97-108.
[35]Kehl K L, Jee J, Pichotta K, et al. Shareable artificial intelligence to extract cancer outcomes from electronic health records for precision oncology research[J]. Nat Commun, 2024, 15(1): 9787.
[36]Kim S, Jang S, Kim B, et al. Automated pathologic TN classification prediction and rationale generation from lung cancer surgical pathology reports using a large language model fine-tuned with chain-of-thought: algorithm development and validation study[J]. JMIR Med Inform, 2024, 12: e67056.
[37]Boehm K M, Aherne E A, Ellenson L, et al. Multimodal data integration using machine learning improves risk stratification of high-grade serous ovarian cancer[J]. Nat Cancer, 2022, 3(6): 723-733.
[38]Truhn D, Eckardt J N, Ferber D, et al. Large language models and multimodal foundation models for precision oncology[J]. NPJ Precis Oncol, 2024, 8(1): 72.
[39]Oh Y, Park S, Byun H K, et al. LLM-driven multimodal target volume contouring in radiation oncology[J]. Nat Commun, 2024, 15(1): 9186.
[40]Chen Z, Chen Y, Sun Y, et al. Predicting gastric cancer response to anti-HER2 therapy or anti-HER2 combined immunotherapy based on multi-modal data[J]. Signal Transduct Target Ther, 2024, 9(1): 222.
[41]Huang J W, Yang D M, Rong R C, et al. A critical assessment of using ChatGPT for extracting structured data from clinical notes[J]. NPJ Digit Med, 2024, 7(1): 106.
[42]Bhayana R, Nanda B P, Dehkharghanian T, et al. Large language models for automated synoptic reports and resectability categorization in pancreatic cancer[J]. Radiology, 2024, 311(3): e233117.
[43]Dagdelen J, Dunn A, Lee S, et al. Structured information extraction from scientific text with large language models[J]. Nat Commun, 2024, 15(1): 1418.
[44]Dave T, Athaluri S A, Singh S. ChatGPT in medicine: an overview of its applications, advantages, limitations, future prospects, and ethical considerations[J]. Front Artif Intell, 2023, 6: 1169595.
[45]Zhang K, Zhou R, Adhikarla E, et al. A generalist vision-language foundation model for diverse biomedical tasks[J]. Nat Med, 2024, 30(11): 3129-3141.
[46]Liu X H, Liu H, Yang G X, et al. A generalist medical language model for disease diagnosis assistance[J]. Nat Med, 2025, 31(3): 932-942.
[47]Yalamanchili A, Sengupta B, Song J, et al. Quality of large language model responses to radiation oncology patient care questions[J]. JAMA Netw Open, 2024, 7(4): e244630.
[48]Li T H, Shetty S, Kamath A, et al. CancerGPT for few shot drug pair synergy prediction using large pretrained language models[J]. NPJ Digit Med, 2024, 7(1): 40.
[49]Abas Mohamed Y, Ee Khoo B, Shahrimie Mohd Asaari M, et al. Decoding the black box: explainable AI (XAI) for cancer diagnosis, prognosis, and treatment planning-a state-of-the art systematic review[J]. Int J Med Inform, 2025, 193: 105689.
[50]Bagheri Tofighi A, Ahmadi A, Mosadegh H. A novel case-based reasoning system for explainable lung cancer diagnosis[J]. Comput Biol Med, 2025, 185: 109547.
[51]S. Alshuhri M, Al-Musawi S G, Al-Alwany A A, et al. Artificial intelligence in cancer diagnosis: Opportunities and challenges[J]. Pathol Res Pract, 2024, 253: 154996.
|