首都医科大学学报 ›› 2026, Vol. 47 ›› Issue (1): 190-197.doi: 10.3969/j.issn.1006-7795.2026.01.024

• 专论与综述 • 上一篇    下一篇

人工智能在胆管癌诊疗中的应用

梁正,刘揆亮,宁婷婷,李鹏,张澍田*#,隗永秋*#   

  1. 首都医科大学附属北京友谊医院消化内科 国家消化系统疾病临床医学研究中心消化分中心 首都医科大学消化病学系 消化健康全国重点实验室 消化疾病癌前病变北京市重点实验室,北京 100050
  • 收稿日期:2025-08-02 修回日期:2025-09-01 出版日期:2026-02-21 发布日期:2026-02-02
  • 通讯作者: 张澍田,隗永秋 E-mail:zhangshutian@ccmu.edu.cn; weiyongqiu@ccmu.edu.cn

The application of artificial intelligence in the diagnosis and treatment of cholangiocarcinoma

Liang Zheng, Liu Kuiliang, Ning Tingting, Li Peng, Zhang Shutian*#, Wei Yongqiu*#   

  1. Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Faculty of Gastroenterology of Capital Medical University, State Key Laboratory of Digestive Health, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing 100050, China
  • Received:2025-08-02 Revised:2025-09-01 Online:2026-02-21 Published:2026-02-02

摘要: 人工智能(artificial intelligence, AI)在胆管癌诊疗中的应用已展现出显著潜力。基于深度学习的影像分析技术能够实现病灶自动分割、精准鉴别诊断及淋巴结转移等病理行为的预测,显著提升诊断效能。内镜辅助系统通过卷积神经网络实时识别胆管结构及恶性狭窄,优化操作流程。病理诊断方面,AI模型利用高光谱或常规白光图像实现肿瘤分类与分子亚型识别,为预后评估及靶向治疗提供依据。当前挑战主要包括数据标准化不足与模型泛化能力有限,未来需通过多中心协作与算法优化推动临床转化。

关键词: 胆管癌, 影像组学, 鉴别诊断, 人工智能, 深度学习, 精准医疗

Abstract: Artificial intelligence (AI) has demonstrated significant potential in the diagnosis and treatment of cholangiocarcinoma. Deep learning-based imaging analysis techniques enable automated lesion segmentation, accurate differential diagnosis, and prediction of pathological behaviors such as lymph node metastasis, substantially improving diagnostic efficacy. Endoscopic assistance systems, utilizing convolutional neural networks, facilitate real-time identification of biliary structures and malignant strictures, optimizing procedural workflows. In pathological diagnosis, AI models leverage hyperspectral or conventional white-light pathological scanned images to achieve tumor classification and molecular subtyping, providing critical support for prognostic assessment and targeted therapy. Current challenges primarily include insufficient data standardization and limited model generalizability. Future advancements will require multicenter collaboration and algorithmic optimization to promote clinical translation. 

Key words: cholangiocarcinoma, radiomics, differential diagnosis, artificial intelligence, deep learning, precision medicine

中图分类号: