[1] Lim Y S, Won T B, Shim W S, et al. Induction of airway remodeling of nasal mucosa by repetitive allergen challenge in a murine model of allergic rhinitis[J]. Ann Allergy Asthma Immunol, 2007, 98(1):22-31.[2] Nakaya M, Dohi M, Okunishi K, et al. Prolonged allergen challenge in murine nasal allergic rhinitis: nasal airway remodeling and adaptation of nasal airway responsiveness[J]. Laryngoscope, 2007, 117(5):881-885.[3] Moon I J, Kim D Y, Rhee C S, et al. Role of angiogenic factors in airway remodeling in an allergic rhinitis murine model[J]. Allergy Asthma Immunol Res, 2012, 4(1):37-45.[4] Kirmaz C, Ozbilgin K, Yuksel H, et al. Increased expression of angiogenic markers in patients with seasonal allergic rhinitis[J]. Eur Cytokine Netw, 2004, 15(4):317-322.[5] Sarma V, Wolf F W, Marks R M, et al. Cloning of a novel tumor necrosis factor-alpha-inducible primary response gene that is differentially expressed in development and capillary tube-like formation in vitro[J]. J Immunol, 1992, 148(10):3302-3312.[6] Ma Y, Koza-Taylor P H, DiMattia D A, et al. Microarray analysis uncovers retinoid targets in human bronchial epithelial cells[J]. Oncogene, 2003, 22(31):4924-4932.[7] Cooper P, Potter S, Mueck B, et al. Identification of genes induced by inflammatory cytokines in airway epithelium[J]. Am J Physiol Lung Cell Mol Physiol, 2001, 280(5):L841-852.[8] Chen L C, Chen C C, Liang Y, et al. A novel role for TNFAIP2: its correlation with invasion and metastasis in nasopharyngeal carcinoma[J]. Mod Pathol, 2011, 24(2):175-184.[9] Liu Z, Wei S, Ma H, et al. A functional variant at the miR-184 binding site in TNFAIP2 and risk of squamous cell carcinoma of the head and neck[J]. Carcinogenesis, 2011, 32(11):1668-1674.[10] Kondratiev S, Duraisamy S, Unitt C L, et al. Aberrant expression of the dendritic cell marker TNFAIP2 by the malignant cells of Hodgkin lymphoma and primary mediastinal large B-cell lymphoma distinguishes these tumor types from morphologically and phenotypically similar lymphomas[J]. Am J Surg Pathol, 2011, 35(10):1531-1539.[11] KleinJan A, Willart M, van Nimwegen M, et al. United airways: circulating Th2 effector cells in an allergic rhinitis model are responsible for promoting lower airways inflammation[J]. Clin Exp Allergy, 2010, 40(3):494-504.[12] Wang M, Zhang W, Shang J, et al. Immunomodulatory effects of IL-23 and IL-17 in a mouse model of allergic rhinitis[J]. Clin Exp Allergy, 2013, 43(8):956-966.[13] Konno M, Hamazaki T S, Fukuda S, et al. Efficiently differentiating vascular endothelial cells from adipose tissue-derived mesenchymal stem cells in serum-free culture[J]. Biochem Biophys Res Commun, 2010, 400(4):461-465.[14] Liu Y, Lu X, Yu H J, et al. The expression of osteopontin and its association with Clara cell 10 kDa protein in allergic rhinitis[J]. Clin Exp Allergy, 2010, 40(11):1632-1641.[15] Baraniuk J N. Pathogenesis of allergic rhinitis[J]. J Allergy Clin Immunol, 1997, 99(2):S763-772.[16] Matsune S, Ohori J, Sun D, et al. Vascular endothelial growth factor produced in nasal glands of perennial allergic rhinitis[J]. Am J Rhinology, 2008, 22(4):365-370.[17] Mori S, Fujieda S, Sunaga H, et al. Expression of platelet-derived endothelial cell growth factor and vascularity in the nasal mucosa from allergic rhinitis[J]. Clin Exp Allergy, 2000, 30(11):1637-1644.[18] Sarma V, Wolf F W, Marks R M, et al. Cloning of a novel tumor necrosis factor-alpha-inducible primary response gene that is differentially expressed in development and capillary tube-like formation in vitro[J]. J Immunol, 1992, 148(10):3302-3312. |