[1] No authors listed. Correction: effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients[J]. N Engl J Med, 2000, 342(18): 1376.[2] Alenina N, Bader M, Walther T., et al Imprinting of the murine MAS protooncogene is restricted to its antisense RNA[J]. Biochem Biophys Res Commun, 2002, 290(3):1072-1078.[3] Strazzullo P, Galletti F. Impact of the renin-angiotensin system on lipid and carbohydrate metabolism[J]. Curr Opin Nephrol Hypertens, 2004, 13(3):325-332.[4] Muscogiuri G, Chavez A O, Gastaldelli A, et al. The crosstalk between insulin and renin-angiotensin-aldosterone signaling systems and its effect on glucose metabolism and diabetes prevention[J]. Curr Vasc Pharmacol, 2008, 6(4): 301-312.[5] Wei Y, Sowers J R, Nistala R, et al. Angiotensin Ⅱ-induced NADPH oxidase activation impairs insulin signaling in skeletal muscle cells[J]. J Biol Chem, 2006, 281(46): 35137-35146.[6] Giani J F, Gironacci M M, Munoz M C, et al. Angiotensin-(1 7) stimulates the phosphorylation of JAK2, IRS-1 and Akt in rat heart in vivo: role of the AT1 and Mas receptors[J]. Am J Physiol Heart Circ Physiol, 2007, 293(2): H1154-1163.[7] Santos S H, Fernandes L R, Mario E G, et al. Mas deficiency in FVB/N mice produces marked changes in lipid and glycemic metabolism[J]. Diabetes, 2008, 57(2):340-347.[8] Niu M J, Yang J K, Lin S S, et al. Loss of angiotensin-converting enzyme 2 leads to impaired glucose homeostasis in mice[J]. Endocrine, 2008, 34(1-3): 56-61.[9] GiaccoF, Brownlee M. Oxidative stress and diabetic complications[J]. Circ Res, 2010, 107(9):1058-1070.[10] Sarfstein R, Gorzalczany Y, Mizrahi A, et al. Dual role of Rac in the assembly of NADPH oxidase, tethering to the membrane and activation of p67phox: a study based on mutagenesis of p67phox-Rac1 chimeras[J]. J Biol Chem, 2004, 279(16):16007-16016.[11] Weyer C, Funahashi T, Tanaka S, et al. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia[J]. J Clin Endocrinol Metab, 2001, 86(5):1930-1935.[12] Wu X, Motoshima H, Mahadev K, et al. Involvement of AMP-activated protein kinase in glucose uptake stimulated by the globular domain of adiponectin in primary rat adipocytes[J]. Diabetes, 2003, 52(6):1355-1363.[13] Hattori Y, Akimoto K, Gross S S, et al. Angiotensin-Ⅱ-induced oxidative stress elicits hypoadiponectinaemia in rats[J]. Diabetologia, 2005, 48(6): 1066-1074.[14] 崔常清.胰岛素抵抗的机制与临床研究进展[J].中国煤炭工业医学杂志, 2012, 15(7):1119-1121.[15] Fukuoka H, Ⅱda K, Nishizawa H, et al. IGF-I stimulates reactive oxygen species (ROS) production and inhibits insulin-dependent glucose uptake via ROS in 3T3-L1 adipocytes[J]. Growth Horm IGF Res, 2010, 20(3):212-219.[16] 杨晶, 裴丽娜, 都健, 等. 胰岛素抵抗大鼠脂肪组织chemerin mRNA的表达和意义[J].中国医科大学学报, 2012, 41(1):35-37.[17] Munoz M C, Giani J F, Dominici F P. Angiotensin-(1-7) stimulates the phosphorylation of Akt in rat extracardiac tissues in vivo via receptor Mas[J]. Regul Pept, 2010, 161(1-3): 1-7.[18] 南楠, 金泽宁, 杨泽.脂联素基因多态性与2型糖尿病合并冠心病的关联研究[J].首都医科大学学报, 2012, 33(4):6-11.[19] Sampaio W O, Souza dos Santos R A, Faria-Silva R, et al. Angiotensin-(1-7) through receptor Mas mediates endothelial nitric oxide synthase activation via Akt-dependent pathways[J]. Hypertension, 2007, 49(1):185-192.[20] Furukawa S, Fujita T, Shimabukuro M, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome[J]. J Clin Invest, 2004, 114(12):1752-1761.[21] Nakanishi S, Yamane K, Kamei N, et al. A protective effect of adiponectin against oxidative stress in Japanese Americans: the association between adiponectin or leptin and urinary isoprostane[J]. Metabolism, 2005, 54(2):194-199.[22] Newsholme P, Haber E P, Hirabara S M, et al. Diabetes associated cell stress and dysfunction: role of mitochondrial and non-mitochondrial ROS production and activity[J]. J Physiol, 2007, 583(Pt 1):9-24.[23] Ferreira A J, Santors R A. Cardiovasular actins of angiotensin-(1-7)[J]. Braz J Med Biol Res, 2005, 38(4):499-507. |