首都医科大学学报 ›› 2024, Vol. 45 ›› Issue (2): 262-270.doi: 10.3969/j.issn.1006-7795.2024.02.014
高明远1,2#, 孙晓红1,2#, 杨子成1,2, 徐群渊1, 雷慧萌1,2*
收稿日期:2023-05-16
出版日期:2024-04-21
发布日期:2024-04-25
通讯作者:
雷慧萌
E-mail:leihm@ ccmu.edu.cn
基金资助:Gao Mingyuan1,2#, Sun Xiaohong1,2#, Yang Zicheng1,2 , Xu Qunyuan1 , Lei Huimeng1,2*
Received:2023-05-16
Online:2024-04-21
Published:2024-04-25
Supported by:摘要: 目的 训练C57/6J野生型小鼠与Sapap3基因敲除小鼠分别进行嗅觉、触觉、听觉为线索的反转学习行为学学习,探究嗅觉、触觉、听觉为线索的小鼠反转学习范式的可行性与对Sapap3基因敲除鼠认知灵活性的探究。方法 将8~10周的C57/6J野生型小鼠与Sapap3基因敲除鼠各分成3组,在头部固定的情况下进行反转学习行为学训练,通过分析各个阶段的舔水事件的正确率、错误率与学习速率等指标,观察小鼠在3种反转学习行为学范式下的学习能力。结果 Sapap3基因敲除鼠与C57/6J野生型小鼠在以嗅觉与听觉为线索的反转学习范式反转阶段达到学习标准所需的时间差异有统计学意义。结论 反转学习行为学范式可用于对认知灵活性的检测并且Sapap3基因敲除小鼠的认知灵活性存在障碍,为后续进行对与认知灵活性相关的疾病与脑区的研究的奠定了行为学基础。
中图分类号:
高明远, 孙晓红, 杨子成, 徐群渊, 雷慧萌. 反转学习行为学范式对Sapap3 基因敲除小鼠认知灵活性的检测[J]. 首都医科大学学报, 2024, 45(2): 262-270.
Gao Mingyuan, Sun Xiaohong, Yang Zicheng , Xu Qunyuan , Lei Huimeng. Detection and exploration of cognitive flexibility by reversal learning[J]. Journal of Capital Medical University, 2024, 45(2): 262-270.
| [1] Hollocks J M, Charman T, Baird G, et al. Exploring the impact of adolescent cognitive inflexibility on emotional and behavioural problems experienced by autistic adults[J]. Autism, 2022, 26(5): 1229-1241. [2] Wu J S, Hauert C, Kremen C, et al. A framework on polarization, cognitive inflexibility, and rigid cognitive specialization[J]. Front Psychol, 2022, 13: 35401343. [3] Price R B, Duman R. Neuroplasticity in cognitive and psychological mechanisms of depression: an integrative model[J]. Mol Psychiatry, 2020, 25(3): 530-543. [4] Gruner P, Pittenger C. Cognitive inflexibility in obsessive-compulsive disorder[J]. Neuroscience, 2017, 345: 243-255. [5] Jones, G C R, Simonoff E, et al. The association between theory of mind, executive function, and the symptoms of autism spectrum disorder[J]. Autism Res, 2018, 11(1): 95-109. [6] Dajani D R, Uddin L Q. Demystifying cognitive flexibility: implications for clinical and developmental neuroscience[J]. Trends Neurosci, 2015, 38(9): 571-578. [7] Uddin Q L. Cognitive and behavioural flexibility:neural mechanisms and clinical considerations[J]. Nat Rev Neurosci, 2021, 22(3): 167-179. [8] Park J, Moghaddam B. Impact of anxiety on prefrontal cortex encoding of cognitive flexibility[J]. Neuroscience, 2017, 345: 193-202. [9] Bergstrom C H, Lieberman A G, Lieberman C G, et al. Dorsolateral striatum engagement during reversal learning[J]. Learn Mem, 2020, 27(10): 418-422. [10] Izquierdo A, Brigman J L, Radke A K, et al. The neural basis of reversal learning: an updated perspective[J]. Neuroscience, 2017, 345: 12-26. [11] Ritchey M C, Gilroy S P, Kuroda T, et al. Assessing human performance during contingency changes and extinction tests in reversal-learning tasks[J]. Learn Behav, 2022, 50(4): 494-508. [12] Bensky M K, Bell A M. Predictors of individual variation in reversal learning performance in three-spined sticklebacks[J]. Anim Cogn, 2020, 23(5): 925-938. [13] Welch J M, Wang D Q, Feng G P. Differential mRNA expression and protein localization of the SAP90/PSD-95-associated proteins (SAPAPs) in the nervous system of the mouse[J]. J Comp Neurol, 2004, 472(1): 24-39. [14] Chen M, Wan Y, Ade K, et al. Sapap3 deletion anomalously activates short-term endocannabinoid-mediated synaptic plasticity[J]. J Neurosci, 2011, 31(26): 9563-9573. [15] Wan Y H, Feng G P, Calakos N. Sapap3 deletion causes mGluR5-dependent silencing of AMPAR synapses[J]. J Neurosci, 2011, 31(46): 16685-16691. [16] Lei, H, Lai J, et al. Lateral orbitofrontal dysfunction in the Sapap3 knockout mouse model of obsessive-compulsive disorder[J]. J Psychiatry Neurosci, 2019, 44(2): 120-131. [17] Burguiere E, Monteiro P, Feng G, et al. Optogenetic stimulation of lateral orbitofronto-striatal pathway suppresses compulsive behaviors[J]. Science, 2013, 340(6137): 1243-1246. [18] Pinhal M C, Boom B J G V D, Santana K F, et al. Differential effects of deep brain stimulation of the internal capsule and the striatum on excessive grooming in sapap3 mutant mice[J]. Biol Psychiatry, 2018, 84(12): 917-925. [19] Wan Y, Ade K K, Caffall Z, et al. Circuit-selective striatal synaptic dysfunction in the Sapap3 knockout mouse model of obsessive-compulsive disorder[J]. Biol Psychiatry, 2014, 75(8): 623-630. [20] Huang F, Han L, Jiang Y, et al. Neural adaptation and cognitive inflexibility in repeated problem-solving behaviors[J]. Cortex, 2019, 119: 470-479. [21] Pena V A D L, Fernandez R M, Silva M P, et al. An fMRI study of cognitive regulation of reward processing in generalized anxiety disorder (GAD)[J]. Psychiatry Res Neuroimaging, 2022, 324: 111493. [22] Lange F, Seer C, Loens S, et al. Neural mechanisms underlying cognitive inflexibility in Parkinson's disease[J]. Neuropsychologia, 2016, 93(Pt A): 142-150. [23] Comparan M M, Vargas de la Cruz I, Jauregui H F, et al. Biopsychological correlates of repetitive and restricted behaviors in autism spectrum disorders[J]. Brain Behav, 2021, 11(10): e2341. [24] Yang Z, Wu G, Liu M, et al. Dysfunction of orbitofrontal GABAergic interneurons leads to impaired reversal learning in a mouse model of obsessive-compulsive disorder[J]. Curr Biol, 2021, 31(2): 3381-393 e4. [25] Britton C J, Rauch S L, Rosso M I, et al. Cognitive inflexibility and frontal-cortical activation in pediatric obsessive-compulsive disorder[J]. J Am Acad Child Adolesc Psychiatry, 2010, 49(9): 944-953. |
| [1] | 徐瑞, 高杨, 岳冰, 张政, 杜风, 陈光勇, 李鹏. 胃增生性息肉伴异型增生/腺癌的临床病理学特征分析[J]. 首都医科大学学报, 2025, 46(4): 663-669. |
| [2] | 张文秀, 熊阳, 于明航, 王玺. STAT3在肿瘤免疫应答中的作用机制研究进展[J]. 首都医科大学学报, 2025, 46(3): 442-447. |
| [3] | 江雪, 鱼盼盼, 曾翔俊, 郭彩霞. 基于蛋白质组学揭示可溶性糖基化终末产物受体对缺血/再灌注心肌组织蛋白变化及功能的影响[J]. 首都医科大学学报, 2025, 46(3): 503-510. |
| [4] | 白秀丹, 胥芹, 王安心. 多终点临床试验中多重性问题的统计学方法介绍与应用案例[J]. 首都医科大学学报, 2025, 46(2): 184-190. |
| [5] | 杨笑, 夏雪, 周全, 郝允逸, 王安心. “希望区域”框架样本量重估在适应性设计临床试验中的应用[J]. 首都医科大学学报, 2025, 46(2): 197-201. |
| [6] | 成芳园, 陈冬琨, 刘惠金, 贾军, 王可. 不同频率单侧刺激小鼠背侧纹状体D1-MSN对小鼠运动速度的影响[J]. 首都医科大学学报, 2025, 46(2): 283-288. |
| [7] | 徐龙薇, 王亚丹, 周敏思, 吴静. 中性粒细胞和巨噬细胞在嗜酸性胃肠炎小鼠各组织中的浸润情况分析[J]. 首都医科大学学报, 2025, 46(2): 306-313. |
| [8] | 屈俊达, 杨敏福, 李春林, 孙立伟, 高 赫, 张 旭. 心外膜脂肪影像分割量化方法及其临床应用的研究进展[J]. 首都医科大学学报, 2025, 46(1): 99-105. |
| [9] | 杨 艳, 田 妮, 龙 灵, 贾振香. Hedgehog信号通路介导下FOXP2对糖酵解参与子宫肌瘤细胞增殖和转移的影响[J]. 首都医科大学学报, 2025, 46(1): 115-124. |
| [10] | 吴安琪, 骆泽妮, 江垚, 汪志锴, 诸欣平, 孙希萌. 旋毛虫副肌球蛋白缓解慢性炎症性肠病的初步研究[J]. 首都医科大学学报, 2024, 45(5): 891-899. |
| [11] | 蒋欢, 李姣清, 徐浩森, 兰金意, 杨单植, 张婷, 刘沛敏, 吴丹凤, 白晓燕. 神经轴突导向分子Slit3的相关研究进展[J]. 首都医科大学学报, 2024, 45(5): 917-922. |
| [12] | 高 岳, 岳闻慧, 丁靖茹, 李丽英, 杨 乐. Rspo3/Lgr5促进N-钙黏蛋白表达参与小鼠肝损伤[J]. 首都医科大学学报, 2024, 45(3): 472-480. |
| [13] | 王丽辉, 张伟俊, 杨思敏, 朱 琤, 林 彬, 皋 源, 向淑麟, 余跃天. 白念珠菌气道定植对铜绿假单胞菌所致呼吸机相关性肺炎的影响[J]. 首都医科大学学报, 2024, 45(2): 187-193. |
| [14] | 康彦红, 顾爱琴, 张 莹, 黄 帅. 基于label-free定量蛋白质组学方法筛选沉默CHAF1B基因后心肌细胞差异表达蛋白及调控网络分析[J]. 首都医科大学学报, 2024, 45(2): 312-321. |
| [15] | 张晨光, 丁卫. 分子医学 搏浪蓝海——兼谈基础医学学科发展及教育教学[J]. 首都医科大学学报, 2023, 44(6): 907-911. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||