[1]Vithayathil M, Khan S A. Current epidemiology of cholangiocarcinoma in Western countries[J]. J Hepatol, 2022, 77(6): 1690-1698.
[2]Khan S A, Tavolari S, Brandi G. Cholangiocarcinoma: epidemiology and risk factors[J]. Liver Int, 2019, 39(Suppl 1): 19-31.
[3]Louis C, Papoutsoglou P, Coulouarn C. Molecular classification of cholangiocarcinoma[J]. Curr Opin Gastroenterol, 2020, 36(2): 57-62.
[4]Harrison J M, Visser B C. Cholangiocarcinoma[J]. Surg Clin North Am, 2024, 104(6): 1281-1293.
[5]Gul S, Khan M S, Bibi A, et al. Deep learning techniques for liver and liver tumor segmentation: a review[J]. Comput Biol Med, 2022, 147: 105620.
[6]Li S, Tso G K F, He K J. Bottleneck feature supervised U-Net for pixel-wise liver and tumor segmentation[J]. Expert Syst Appl, 2020, 145: 113131.
[7]He F, Zhang G J, Yang H M, et al. Multi-scale attention module U-Net liver tumour segmentation method[J]. J Phys Conf Ser, 2020, 1678: 012107.
[8]Li W K, Jia M N, Yang C, et al. SPA-UNet: a liver tumor segmentation network based on fused multi-scale features[J]. Open Life Sci, 2023, 18(1): 20220685.
[9]Yang C M, Zhou Q, Li M D, et al. MRI-based automatic identification and segmentation of extrahepatic cholangiocarcinoma using deep learning network[J]. BMC Cancer, 2023, 23(1): 1089.
[10]Li C Q, Zheng X, Guo H L, et al. Differentiation between combined hepatocellular carcinoma and hepatocellular carcinoma: comparison of diagnostic performance between ultrasomics-based model and CEUS LI-RADS v2017[J]. BMC Med Imaging, 2022, 22(1): 36.
[11]Kim T K, Noh S Y, Wilson S R, et al. Contrast-enhanced ultrasound (CEUS) liver imaging reporting and data system (LI-RADS) 2017-a review of important differences compared to the CT/MRI system[J]. Clin Mol Hepatol, 2017, 23(4): 280-289.
[12]Xu X L, Mao Y F, Tang Y Q, et al. Classification of hepatocellular carcinoma and intrahepatic cholangiocarcinoma based on radiomic analysis[J]. Comput Math Methods Med, 2022, 2022: 5334095.
[13]Mahmoudi S, Bernatz S, Ackermann J, et al. Computed tomography radiomics to differentiate intrahepatic cholangiocarcinoma and hepatocellular carcinoma[J]. Clin Oncol, 2023, 35(5): e312-e318.
[14]Huang J L, Sun Y, Wu Z H, et al. Differential diagnosis of hepatocellular carcinoma and intrahepatic cholangiocarcinoma based on spatial and channel attention mechanisms[J]. J Cancer Res Clin Oncol, 2023, 149(12): 10161-10168.
[15]Xu H Y, Zou X H, Zhao Y N, et al. Differentiation of intrahepatic cholangiocarcinoma and hepatic lymphoma based on radiomics and machine learning in contrast-enhanced computer tomography[J]. Technol Cancer Res Treat, 2021, 20: 15330338211039125.
[16]Midya A, Chakraborty J, Srouji R, et al. Computerized diagnosis of liver tumors from CT scans using a deep neural network approach[J]. IEEE J Biomed Health Inform, 2023, 27(5): 2456-2464.
[17]Wei Y, Yang M Y, Zhang M, et al. Focal liver lesion diagnosis with deep learning and multistage CT imaging[J]. Nat Commun, 2024, 15(1): 7040.
[18]Huang F, Liu X Y, Liu P, et al. The application value of MRI T2∗WI radiomics nomogram in discriminating hepatocellular carcinoma from intrahepatic cholangiocarcinoma[J]. Comput Math Methods Med, 2022, 2022: 7099476.
[19]Wang X H, Wang S P, Yin X P, et al. MRI-based radiomics distinguish different pathological types of hepatocellular carcinoma[J]. Comput Biol Med, 2022, 141: 105058.
[20]Wang S P, Wang X H, Yin X P, et al. Differentiating HCC from ICC and prediction of ICC grade based on MRI deep-radiomics: using lesions and their extended regions[J]. Phys Med, 2024, 120: 103322.
[21]Liu X Y, Khalvati F, Namdar K, et al. Can machine learning radiomics provide pre-operative differentiation of combined hepatocellular cholangiocarcinoma from hepatocellular carcinoma and cholangiocarcinoma to inform optimal treatment planning?[J]. Eur Radiol, 2021, 31(1): 244-255.
[22]Hu R, Li H Z, Horng H, et al. Automated machine learning for differentiation of hepatocellular carcinoma from intrahepatic cholangiocarcinoma on multiphasic MRI[J]. Sci Rep, 2022, 12(1): 7924.
[23]Chen X, Chen Y, Chen H B, et al. Machine learning based on gadoxetic acid-enhanced MRI for differentiating atypical intrahepatic mass-forming cholangiocarcinoma from poorly differentiated hepatocellular carcinoma[J]. Abdom Radiol, 2023, 48(8): 2525-2536.
[24]Wang H J, Wang S, Zhou L H. Machine learning-based MRI LAVA dynamic enhanced scanning for the diagnosis of hilar lesions[J]. Comput Math Methods Med, 2022, 2022: 9592970.
[25]Bi L, Yang L, Ma J, et al. Dynamic contract-enhanced CT-based radiomics for differentiation of pancreatobiliary-type and intestinal-type periampullary carcinomas[J]. Clin Radiol, 2022, 77(1): e75-e83.
[26]Zhang S T, Huang S Y, He W, et al. Radiomics-based preoperative prediction of lymph node metastasis in intrahepatic cholangiocarcinoma using contrast-enhanced computed tomography[J]. Ann Surg Oncol, 2022, 29(11): 6786-6799.
[27]Ji G W, Zhu F P, Zhang Y D, et al. A radiomics approach to predict lymph node metastasis and clinical outcome of intrahepatic cholangiocarcinoma[J]. Eur Radiol, 2019, 29(7): 3725-3735.
[28]Pan Y J, Wu S J, Zeng Y, et al. Intra-and peri-tumoral radiomics based on dynamic contrast enhanced-MRI to identify lymph node metastasis and prognosis in intrahepatic cholangiocarcinoma[J]. J Magn Reson Imaging, 2024, 60(6): 2669-2680.
[29]Xu L, Yang P F, Liang W J, et al. A radiomics approach based on support vector machine using MR images for preoperative lymph node status evaluation in intrahepatic cholangiocarcinoma[J]. Theranostics, 2019, 9(18): 5374-5385.
[30]Yang C M, Huang M P, Li S P, et al. Radiomics model of magnetic resonance imaging for predicting pathological grading and lymph node metastases of extrahepatic cholangiocarcinoma[J]. Cancer Lett, 2020, 470: 1-7.
[31]王小勇,曾艳艳,李运兴,等. MRI影像组学预测肝外胆管癌腹部淋巴结转移价值研究[J].四川医学, 2023, 44(9): 947-952.
[32]Zhan P C, Yang T, Zhang Y, et al. Radiomics using CT images for preoperative prediction of lymph node metastasis in perihilar cholangiocarcinoma: a multi-centric study[J]. Eur Radiol, 2024, 34(2): 1280-1291.
[33]Ma X J, Qian X L, Wang Q, et al. Radiomics nomogram based on optimal VOI of multi-sequence MRI for predicting microvascular invasion in intrahepatic cholangiocarcinoma[J]. Radiol Med, 2023, 128(11): 1296-1309.
[34]Zhou Y, Zhou G F, Zhang J L, et al. Radiomics signature on dynamic contrast-enhanced MR images: a potential imaging biomarker for prediction of microvascular invasion in mass-forming intrahepatic cholangiocarcinoma[J]. Eur Radiol, 2021, 31(9): 6846-6855.
[35]Gao W Y, Wang W T, Song D J, et al. A multiparametric fusion deep learning model based on DCE-MRI for preoperative prediction of microvascular invasion in intrahepatic cholangiocarcinoma[J]. J Magn Reson Imaging, 2022, 56(4): 1029-1039.
[36]Fiz F, Masci C, Costa G, et al. PET/CT-based radiomics of mass-forming intrahepatic cholangiocarcinoma improves prediction of pathology data and survival[J]. Eur J Nucl Med Mol Imaging, 2022, 49(10): 3387-3400.
[37]Peng Y T, Zhou C Y, Lin P, et al. Preoperative ultrasound radiomics signatures for noninvasive evaluation of biological characteristics of intrahepatic cholangiocarcinoma[J]. Acad Radiol, 2020, 27(6): 785-797.
[38]Liu Z W, Luo C, Chen X J, et al. Noninvasive prediction of perineural invasion in intrahepatic cholangiocarcinoma by clinicoradiological features and computed tomography radiomics based on interpretable machine learning: a multicenter cohort study[J]. Int J Surg, 2024, 110(2): 1039-1051.
[39]谢朝邦,汤子建,吴洋,等. 基于增强CT影像组学对肝内胆管细胞癌病理分化程度的预测研究[J].临床放射学杂志, 2025, 44(5): 882-887.
[40]Tang Y, Yang C M, Su S, et al. Machine learning-based Radiomics analysis for differentiation degree and lymphatic node metastasis of extrahepatic cholangiocarcinoma[J]. BMC Cancer, 2021, 21(1): 1268.
[41]Song Y D, Zhou G Y, Zhou Y C, et al. Artificial intelligence CT radiomics to predict early recurrence of intrahepatic cholangiocarcinoma: a multicenter study[J]. Hepatol Int, 2023, 17(4): 1016-1027.
[42]Chen B, Mao Y C, Li J C, et al. Predicting very early recurrence in intrahepatic cholangiocarcinoma after curative hepatectomy using machine learning radiomics based on CECT: a multi-institutional study[J]. Comput Biol Med, 2023, 167: 107612.
[43]Bo Z Y, Chen B, Yang Y, et al. Machine learning radiomics to predict the early recurrence of intrahepatic cholangiocarcinoma after curative resection: a multicentre cohort study[J]. Eur J Nucl Med Mol Imaging, 2023, 50(8): 2501-2513.
[44]Park H J, Park B, Park S Y, et al. Preoperative prediction of postsurgical outcomes in mass-forming intrahepatic cholangiocarcinoma based on clinical, radiologic, and radiomics features[J]. Eur Radiol, 2021, 31(11): 8638-8648.
[45]Yao L W, Zhang J, Liu J, et al. A deep learning-based system for bile duct annotation and station recognition in linear endoscopic ultrasound[J]. EBioMedicine, 2021, 65: 103238.
[46]Saraiva M M, Ribeiro T, Ferreira J P S, et al. Artificial intelligence for automatic diagnosis of biliary stricture malignancy status in single-operator cholangioscopy: a pilot study[J]. Gastrointest Endosc, 2022, 95(2): 339-348.
[47]Robles-Medranda C, Baquerizo-Burgos J, Alcivar-Vasquez J, et al. Artificial intelligence for diagnosing neoplasia on digital cholangioscopy: development and multicenter validation of a convolutional neural network model[J]. Endoscopy, 2023, 55(8): 719-727.
[48]Marya N B, Powers P D, Petersen B T, et al. Identification of patients with malignant biliary strictures using a cholangioscopy-based deep learning artificial intelligence (with video)[J]. Gastrointest Endosc, 2023, 97(2): 268-278, e1.
[49]Sun L, Zhou M, Li Q L, et al. Diagnosis of cholangiocarcinoma from microscopic hyperspectral pathological dataset by deep convolution neural networks[J]. Methods, 2022, 202: 22-30.
[50]Chakrabarti S, Rao U S. Lightweight neural network for smart diagnosis of cholangiocarcinoma using histopathological images[J]. Sci Rep, 2023, 13(1): 18854.
[51]Jang H J, Go J H, Kim Y, et al. Deep learning for the pathologic diagnosis of hepatocellular carcinoma, cholangiocarcinoma, and metastatic colorectal cancer[J]. Cancers, 2023, 15(22): 5389.
[52]Calderaro J, Ghaffari Laleh N, Zeng Q H, et al. Deep learning-based phenotyping reclassifies combined hepatocellular-cholangiocarcinoma[J]. Nat Commun, 2023, 14(1): 8290.
[53]Ochi M, Komura D, Ishikawa S. Pathology foundation models[J]. JMA J, 2025, 8(1): 121-130.
[54]Chen R J, Ding T, Lu M Y, et al. Towards a general-purpose foundation model for computational pathology[J]. Nat Med, 2024, 30(3): 850-862.
[55]Vorontsov E, Bozkurt A, Casson A, et al. A foundation model for clinical-grade computational pathology and rare cancers detection[J]. Nat Med, 2024, 30(10): 2924-2935.
[56]Wang X Y, Yang S, Zhang J, et al. Transformer-based unsupervised contrastive learning for histopathological image classification[J]. Med Image Anal, 2022, 81: 102559.
|