[1] Humbert M, Morrell N W, Archer S L, et al. Cellular and molecular pathobiology of pulmonary arterial hypertension[J]. J Am Coll of Cardiol, 2004,43(12 Suppl s):13S-24S.[2] Mandegar M, Fung Y C, Huang W, et al. Cellular and molecular mechanisms of pulmonary vascular remodeling: role in the development of pulmonary hypertension[J]. Microvasc Res, 2004,68(2):75-103.[3] Yuan J X, Aldinger A M, Juhaszova M, et al. Dysfunctional voltage-gated K+ channels in pulmonary artery smooth muscle cells of patients with primary pulmonary hypertension[J]. Circulation, 1998,98(14):1400-1406.[4] Bonnet S, Archer S L. Potassium channel diversity in the pulmonary arteries and pulmonary veins: implications for regulation of the pulmonary vasculature in health and during pulmonary hypertension[J]. Pharmacol Ther, 2007,115(1):56-69.[5] Platoshyn O, Yu Y, Ko E A, et al. Heterogeneity of hypoxia-mediated decrease in I(K(V)) and increase in (cyt) in pulmonary artery smooth muscle cells[J]. Am J Physiol Lung Cell Mol Physiol, 2007,293(2):L402-L416.[6] Sebkhi A, Strange J W, Phillips S C, et al. Phosphodiesterase type 5 as a target for the treatment of hypoxia-induced pulmonary hypertension[J]. Circulation, 2003,107(25):3230-3235.[7] Pauvert O, Bonnet S, Rousseau E, et al. Sildenafil alters calcium signaling and vascular tone in pulmonary arteries from chronically hypoxic rats[J]. Am J Physiol Lung Cell Mol Physiol, 2004,287(3):L577-L583.[8] Platoshyn O, Remillard C V, Fantozzi I, et al. Diversity of voltage-dependent K+ channels in human pulmonary artery smooth muscle cells[J]. Am J Physiol Lung Cell Mol Physiol, 2004,287(1):L226-L238.[9] Pozeg Z I, Michelakis E D, McMurtry M S, et al. In vivo gene transfer of the O2-sensitive potassium channel Kv1.5 reduces pulmonary hypertension and restores hypoxic pulmonary vasoconstriction in chronically hypoxic rats[J]. Circulation, 2003,107(15):2037-2044.[10] Firth A L, Platoshyn O, Brevnova E E, et al. Hypoxia selectively inhibits KCNA5 channels in pulmonary artery smooth muscle cells[J]. Ann N Y Acad Sci, 2009,1177:101-111.[11] Moudgil R, Michelakis E D, Archer S L. The role of K+ channels in determining pulmonary vascular tone, oxygen sensing, cell proliferation, and apoptosis: implications in hypoxic pulmonary vasoconstriction and pulmonary arterial hypertension[J]. Microcirculation, 2006,13(8):615-632.[12] Coetzee W A, Amarillo Y, Chiu J, et al. Molecular diversity of K+ channels[J]. Ann N Y Acad Sci, 1999,868:233-285.[13] Hulme J T, Coppock E A, Felipe A, et al. Oxygen sensitivity of cloned voltage-gated K+ channels expressed in the pulmonary vasculature[J]. Circ Res, 1999,85(6):489-497.[14] Tantini B, Manes A, Fiumana E, et al. Antiproliferative effect of sildenafil on human pulmonary artery smooth muscle cells[J]. Basic Res Cardiol, 2005,100(2):131-138.[15] Guilluy C, Sauzeau V, Rolli-Derkinderen M, et al. Inhibition of RhoA/Rho kinase pathway is involved in the beneficial effect of sildenafil on pulmonary hypertension[J]. Br J Pharmacol, 2005,146(7):1010-1018.[16] Archer S L, Gomberg-Maitland M, Maitland M L, et al. Mitochondrial metabolism, redox signaling, and fusion: a mitochondria-ROS-HIF-1alpha-Kv1.5 O2-sensing pathway at the intersection of pulmonary hypertension and cancer[J]. Am J Physiol Heart Circ Physiol, 2008,294(2):H570-H578.[17] Bonnet S, Michelakis E D, Porter C J, et al. An abnormal mitochondrial-hypoxia inducible factor-1alpha-Kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats: similarities to human pulmonary arterial hypertension[J]. Circulation, 2006,113(22):2630-2641.[18] Patel A J, Honore E. Molecular physiology of oxygen-sensitive potassium channels[J]. Eur Respir J, 2001,18(1):221-227. |