[1] Li H, Chai Q, Gutterman D D, et al. Elevated glucose impairs cAMP-mediated dilation by reducing Kv channel activity in rat small coronary smooth muscle cells[J]. Am J Physiol Heart Circ Physiol, 2003, 285(3): H1213-H1219. [2] Ohanyan V, Yin L, Bardakjian R, et al. Requisite Role of Kv1.5 channels in coronary metabolic dilation[J].Circ Res, 2015, 117(7): 612-621. [3] Li H, Gutterman D D, Rusch N J, et al. Nitration and functional loss of voltage-gated K+ channels in rat coronary microvessels exposed to high glucose[J]. Diabetes, 2004, 53(9): 2436-2442. [4] Matsui T, Oda E, Higashimoto Y, et al. Glyceraldehyde-derived pyridinium (GLAP) evokes oxidative stress and inflammatory and thrombogenic reactions in endothelial cells via the interaction with RAGE[J]. Cardiovasc Diabetol, 2015, 14: 1. [5] Wei Q, Ren X, Jiang Y, et al. Advanced glycation end products accelerate rat vascular calcification through RAGE/oxidative stress[J]. BMC Cardiovasc Disord, 2013, 13: 13. [6] Lander H M, Tauras J M, Ogiste J S, et al. Activation of the receptor for advanced glycation end products triggers a p21(ras)-dependent mitogen-activated protein kinase pathway regulated by oxidant stress[J]. J Biol Chem, 1997, 272(28): 17810-17814. [7] van Eupen M G, Schram M T, Colhoun H M, et al. Plasma levels of advanced glycation endproducts are associated with type 1 diabetes and coronary artery calcification[J]. Cardiovasc Diabetol, 2013,12: 149. [8] Sveen K A, Nerdrum T, Hanssen K F, et al. Impaired left ventricular function and myocardial blood flow reserve in patients with long-term type 1 diabetes and no significant coronary artery disease: associations with protein glycation[J]. Diab Vasc Dis Res, 2014, 11(2): 84-91. [9] 李卫萍, 李虹伟, 沈絮华, 等. 大鼠冠状动脉平滑肌细胞的原代培养及鉴定[J]. 中国心血管杂志, 2011, 16(4): 309-311. [10] ZhaoLM, WangY, MaX Z, et al. Advanced glycation end products impair K(Ca)3.1- and K(Ca)2.3-mediated vasodilatation via oxidative stress in rat mesenteric arteries[J]. Pflugers Arch, 2014, 466(2): 307-317. [11] de Oliveira Silva C, Delbosc S, Arais C, et al. Modulation of CD36 protein expression by AGEs and insulin in aortic VSMCs from diabetic and non-diabetic rats[J]. Nutr Metab Cardiovasc Dis, 2008, 18(1): 23-30. [12] Jackson W F. Ion channels and vascular tone[J]. Hypertension, 2000, 35(1Pt2): 173-178. [13] Bubolz A H, Li H, Wu Q, et al. Enhanced oxidative stress impairs cAMP-mediated dilation by reducing Kv channel function in small coronary arteries of diabetic rats[J]. Am J Physiol Heart Circ Physiol, 2005, 289(5): H1873-H1880. [14] Gao X, Zhang H, Schmidt A M, et al. AGE/RAGE produces endothelial dysfunction in coronary arterioles in type 2 diabetic mice[J]. Am J Physiol Heart Circ Physiol, 2008, 295(2): H491-H498. [15] Lee I S, Yu S Y, Jung S H, et al. Proanthocyanidins from Spenceria ramalana and their effects on AGE formation in vitro and hyaloid-retinal vessel dilation in larval zebrafish in vivo[J]. J Nat Prod, 2013, 76(10): 1881-1888. [16] Kajikawa M, Nakashima A, Fujimura N, et al. Ratio of serum levels of AGEs to soluble form of RAGE is a predictor of endothelial function[J]. Diabetes Care, 2015, 38(1): 119-125. [17] McVicar C M, Ward M, Colhoun L M, et al. Role of the receptor for advanced glycation endproducts (RAGE) in retinal vasodegenerative pathology during diabetes in mice[J]. Diabetologia, 2015, 58(5): 1129-1137. [18] Elvira B, Warsi J, Munoz C, et al. SPAK and OSR1 sensitivity of voltage-gated K+ channel Kv1.5[J]. J Membr Biol, 2015, 248(1): 59-66. [19] Chapalamadugu K C, Panguluri S K, Bennett E S, et al. High level of oxygen treatment causes cardiotoxicity with arrhythmias and redox modulation[J]. Toxicol Appl Pharmacol, 2015, 282(1): 100-107. [20] Kurokawa S, Niwano S, Niwano H, et al. Cardiomyocyte-derived mitochondrial superoxide causes myocardial electrical remodeling by downregulating potassium channels and related molecules[J]. Circ J, 2014, 78(8): 1950-1959. [21] 王莉, 俞春江,刘伟. 急性脑梗死患者的可溶性糖基化终产物受体表达及其影响因素分析[J]. 中国脑血管病杂志,2014,11(9):461-465,504. |