[1] Wang L V, Hu S. Photoacoustic tomography:in vivo imaging from organelles to organs[J]. Science,2012, 335(6075):1458-1462. [2] Huang G, Si Z, Yang S, et al. Dextran based pH-sensitive near-infrared nanoprobe for in vivo differential-absorption dual-wavelength photoacoustic imaging of tumors[J]. J Mater Chem,2012, 22(42):22575-22581. [3] 曾礼漳, 杨思华, 邢达. 光声成像技术及其医学应用进展[J]. 华南师范大学学报(自然科学版),2016, 48(1):9-15. [4] Xie C, Zhen X, Lei Q, et al. Self-Assembly of semiconducting polymer amphiphiles for in vivo photoacoustic imaging[J]. Adv Funct Mater,2017, 27(8):1605397. [5] Lovell J F, Liu T W, Chen J, et al. Activatable photosensitizers for imaging and therapy[J]. Chem Rev,2010, 110(5):2839-2857. [6] Nie L, Chen X. Structural and functional photoacoustic molecular tomography aided by emerging contrast agents[J]. Chem Soc Rev,2014, 43(20):7132-7170. [7] Pu K, Shuhendler A J, Jokerst J V, et al. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice[J]. Nat Nanotechnol,2014, 9(3):233-239. [8] Pu K, Chattopadhyay N, Rao J. Recent advances of semiconducting polymer nanoparticles in in vivo molecular imaging[J]. J Control Release,2016, 240:312-322. [9] 李洁, 佘振南, 邓意辉. 高渗透长滞留效应理论在肿瘤靶向药物传递系统设计中的应用进展[J].沈阳药科大学学报, 2013,30(2):150-159. [10] Wang L V, Yao J. A practical guide to photoacoustic tomography in the life sciences[J]. Nat Methods,2016, 13(8):627-638. |