[1] The Cancer Genome Atlas Research Network. Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas [J]. N Engl J Med, 2015, 372(26): 2481-2498. [2] Yang X F, Lin Y, Xing Z, et al. Predicting 1p/19q codeletion status using diffusion-, susceptibility-, perfusion-weighted, and conventional MRI in IDH-mutant lower-grade gliomas [J]. Acta radiol, 2021, 62(12): 1657-1665. [3] Liu Z Y, Zhang T, Jiang H, et al. Conventional MR-based preoperative nomograms for prediction of IDH/1p19q subtype in low-grade glioma [J]. Acad Radiol, 2019, 26(8): 1062-1070. [4] Park S I, Suh C H, Guenette J P, et al. The T2-FLAIR mismatch sign as a predictor of IDH-mutant, 1p/19q-noncodeleted lower-grade gliomas: a systematic review and diagnostic meta-analysis [J]. Eur Radiol, 2021, 31(7): 5289-5299. [5] 王康, 靳峰. 弥漫性低级别胶质瘤的临床影像学及分子病理分型的相关研究进展 [J]. 中华神经医学杂志, 2020, 19(6): 562-565. [6] Gupta M, Gupta T, Purandare N, et al. Utility of flouro-deoxy-glucose positron emission tomography/computed tomography in the diagnostic and staging evaluation of patients with primary CNS lymphoma [J]. CNS Oncol, 2019, 8(4): CNS46. [7] Song S S, Wang L M, Yang H W, et al. Static 18F-FET PET and DSC-PWI based on hybrid PET/MR for the prediction of gliomas defined by IDH and 1p/19q status [J]. Eur Radiol, 2021, 31(6): 4087-4096. [8] Katsanos A H, Alexiou G A, Fotopoulos A D, et al. Performance of 18F-FDG, 11C-methionine, and 18F-FET PET for glioma grading: a meta-analysis [J]. Clin Nucl Med, 2019, 44(11): 864-869. [9] Kim D, Chun J H, Kim S H, et al. Re-evaluation of the diagnostic performance of 11C-methionine PET/CT according to the 2016 WHO classification of cerebral gliomas [J]. Eur J Nucl Med Mol Imaging, 2019, 46(8): 1678-1684. [10] 周维燕, 华逢春, 肖见飞, 等. 11C-MET PET显像对术前脑胶质瘤分级判断及对IDH1基因突变的预测价值 [J]. 中华核医学与分子影像杂志, 2020, 40(3): 153-158. [11] Riva M, Lopci E, Castellano A, et al. Lower grade gliomas: relationships between metabolic and structural imaging with grading and molecular factors [J]. World Neurosurg, 2019, 126: e270-e280. [12] Gupta N, Singh N. To evaluate prognostic significance of metabolic-derived tumour volume at staging 18-flurodeoxyglucose PET-CT scan and to compare it with standardized uptake value-based response evaluation on interim 18-flurodeoxyglucose PET-CT scan in patients of non-Hodgkin's lymphoma (diffuse large B-cell lymphoma) [J]. Nucl Med Commun, 2020, 41(4): 395-404. [13] Law I, Albert N L, Arbizu J, et al. Joint EANM/EANO/RANO practice guidelines/SNMMI procedure standards for imaging of gliomas using PET with radiolabelled amino acids and [18F]FDG: version 1.0 [J]. Eur J Nucl Med Mol Imaging, 2019, 46(3): 540-557. [14] Ichimura K, Pearson D M, Kocialkowski S, et al. IDH1 mutations are present in the majority of common adult gliomas but rare in primary glioblastomas [J]. Neuro Oncol, 2009, 11(4): 341-347. [15] Okita Y, Shofuda T, Kanematsu D, et al. The association between 11C-methionine uptake, IDH gene mutation, and MGMT promoter methylation in patients with grade Ⅱ and Ⅲ gliomas [J]. Clin Radiol, 2020, 75(8): 622-628. [16] Kong Z R, Zhang Y C, Liu D L, et al. Role of traditional CHO PET parameters in distinguishing IDH, TERT and MGMT alterations in primary diffuse gliomas [J]. Ann Nucl Med, 2021, 35(4): 493-503. [17] Ogawa T, Kawai N, Miyake K, et al. Diagnostic value of PET/CT with 11C-methionine (MET) and 18F-fluorothymidine (FLT) in newly diagnosed glioma based on the 2016 WHO classification [J]. EJNMMI Res, 2020, 10(1): 44. [18] Liu F M, Gao Y F, Kong Y Y, et al. The diagnostic value of lower glucose consumption for IDH1 mutated gliomas on FDG-PET [J]. BMC Cancer, 2021, 21(1): 83. [19] Hartmann C, Hentschel B, Wick W, et al. Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas [J]. Acta Neuropathol, 2010, 120(6): 707-718. [20] Xing Z, Yang X, She D, et al. Noninvasive assessment of IDH mutational status in World Health Organization grade Ⅱ and Ⅲ astrocytomas using DWI and DSC-PWI combined with conventional MR imaging [J]. AJNR Am J Neuroradiol, 2017, 38(6): 1138-1144. [21] Zhao J, Wang Y L, Li X B, et al. Comparative analysis of the diffusion kurtosis imaging and diffusion tensor imaging in grading gliomas, predicting tumour cell proliferation and IDH-1 gene mutation status [J]. J Neurooncol, 2019, 141(1): 195-203. [22] Goyal A, Yolcu Y U, Goyal A, et al. The T2-FLAIR-mismatch sign as an imaging biomarker for IDH and 1p/19q status in diffuse low-grade gliomas: a systematic review with a Bayesian approach to evaluation of diagnostic test performance [J]. Neurosurg Focus, 2019, 47(6): E13. [23] Broen M P G, Smits M, Wijnenga M M J, et al. The T2-FLAIR mismatch sign as an imaging marker for non-enhancing IDH-mutant, 1p/19q-intact lower-grade glioma: a validation study [J]. Neuro Oncol, 2018, 20(10): 1393-1399. [24] Jansen N L, Schwartz C, Graute V, et al. Prediction of oligodendroglial histology and LOH 1p/19q using dynamic [18F]FET-PET imaging in intracranial WHO grade Ⅱ and Ⅲ gliomas [J]. Neuro Oncol, 2012, 14(12): 1473-1480. [25] Castello A, Riva M, Fernandes B, et al. The role of 11C-methionine PET in patients with negative diffusion-weighted magnetic resonance imaging: correlation with histology and molecular biomarkers in operated gliomas [J]. Nucl Med Commun, 2020, 41(7): 696-705. [26] Saito T, Maruyama T, Muragaki Y, et al. 11C-methionine uptake correlates with combined 1p and 19q loss of heterozygosity in oligodendroglial tumors [J]. AJNR Am J Neuroradiol, 2013, 34(1): 85-91. |