[1] 鲍一笑, 陈爱欢, 符州, 等. 儿童支气管哮喘诊断与防治指南[J]. 中华儿科杂志, 2016, 54(3): 167-181. [2] 全国儿童哮喘防治协作组. 中国城区儿童哮喘患病率调查[J]. 中华儿科杂志, 2003, 41(2): 123-127. [3] 全国儿科哮喘协作组, 中国疾病预防控制中心环境与健康相关产品安全所. 第三次中国城市儿童哮喘流行病学调查[J]. 中华儿科杂志, 2013, 51(10): 729-735. [4] Xiang L, Zhao J, Zheng Y J, et al. Uncontrolled asthma and its risk factors in Chinese children: a cross-sectional observational study[J]. J Asthma, 2016, 53(7): 699-706. [5] 中华医学会儿科学分会呼吸学组肺功能协作组, 《中华实用儿科临床杂志》编辑委员会. 儿童肺功能系列指南(二): 肺容积和通气功能[J]. 中华实用儿科临床杂志, 2016, 31(10): 744-750. [6] 中华医学会呼吸病学分会肺功能专业组. 肺功能检查指南(第二部分)——肺量计检查[J]. 中华结核和呼吸杂志, 2014, 37(7): 481-486. [7] Global Initiative for Asthma. Global strategy for asthma management and prevention (2020 update)[EB/OL]. (2020-04-06)[2021-04-21]. https://ginasthma.org/wp-content/uploads/2020/06/GINA-2020-report_20_06_04-1-wms.pdf. [8] 侯晓玲, 刘晓颖, 皇惠杰, 等. 规范治疗管理对哮喘患儿的控制效果和肺功能转归研究[J]. 国际儿科学杂志, 2018, 45(1): 48-52. [9] 喻嘉宏, 陈小娜, 郜艳晖, 等. 潜变量增长混合模型在医学研究中的应用[J]. 中国卫生统计, 2018, 35(4): 496-499. [10] 冯国双, 于石成, 胡跃华. 轨迹分析模型在流行病学研究中的应用[J]. 中华流行病学杂志, 2014, 35(7): 865-867. [11] 冯国双, 于石成, 刘世炜. 轨迹分析模型在追踪数据分析中的应用[J]. 中国预防医学杂志, 2014, 15(3): 292-295. [12] 汤宁, 宋秋月, 易东, 等. 医学纵向数据建模方法及其统计分析策略[J]. 中国卫生统计, 2019, 36(3): 441-444, 447. [13] 王巍巍, 张格, 周庆欣, 等. GRoLTS清单: 潜变量轨迹研究报告规范[J]. 中国循证医学杂志, 2020, 20(5): 604-615. [14] Custovic A, Ainsworth J, Arshad H, et al. The study team for early life asthma research (STELAR) consortium 'asthma e-lab': team science bringing data, methods and investigators together[J]. Thorax, 2015, 70(8): 799-801. [15] Ödling M, Wang G, Andersson N, et al. Characterization of asthma trajectories from infancy to young adulthood[J]. J Allergy Clin Immunol Pract, 2021, 9(6): 2368-2376.e3. [16] Wang G, Kull I, Bergström A, et al. Early-life risk factors for reversible and irreversible airflow limitation in young adults: findings from the BAMSE birth cohort[J]. Thorax, 2021, 76(5): 503-507. [17] Agustí A, Faner R. COPD beyond smoking: new paradigm, novel opportunities[J]. Lancet Respir Med, 2018, 6(5): 324-326. [18] Melén E, Guerra S, Hallberg J, et al. Linking COPD epidemiology with pediatric asthma care: implications for the patient and the physician[J]. Pediatr Allergy Immunol, 2019, 30(6): 589-597. [19] Agustí A, Noell G, Brugada J, et al. Lung function in early adulthood and health in later life: a transgenerational cohort analysis[J]. Lancet Respir Med, 2017, 5(12): 935-945. [20] Vasquez M M, Zhou M H, Hu C C, et al. Low lung function in young adult life is associated with early mortality[J]. Am J Respir Crit Care Med, 2017, 195(10): 1399-1401. [21] Agusti A, Faner R. Lung function trajectories in health and disease[J]. Lancet Respir Med, 2019, 7(4): 358-364. [22] Park S Y, Jung H W, Lee J M, et al. Novel trajectories for identifying asthma phenotypes: a longitudinal study in Korean asthma cohort, COREA[J]. J Allergy Clin Immunol Pract, 2019, 7(6): 1850-1857.e4. [23] Bui D S, Lodge C J, Burgess J A, et al. Childhood predictors of lung function trajectories and future COPD risk: a prospective cohort study from the first to the sixth decade of life[J]. Lancet Respir Med, 2018, 6(7): 535-544. [24] Belgrave D C M, Granell R, Turner S W, et al. Lung function trajectories from pre-school age to adulthood and their associations with early life factors: a retrospective analysis of three population-based birth cohort studies[J]. Lancet Respir Med, 2018, 6(7): 526-534. [25] McGeachie M J, Yates K P, Zhou X, et al. Patterns of growth and decline in lung function in persistent childhood asthma[J]. N Engl J Med, 2016, 374(19): 1842-1852. [26] Saranz R J, Lozano A, Valero A, et al. Impact of rhinitis on lung function in children and adolescents without asthma[J]. Allergol Immunopathol (Madr), 2016, 44(6): 556-562. [27] Kessel A. The impact of intranasal corticosteroids on lung function in children with allergic rhinitis[J]. Pediatr Pulmonol, 2014, 49(9): 932-937. [28] Carlsen K C L, Mowinckel P, Hovland V, et al. Lung function trajectories from birth through puberty reflect asthma phenotypes with allergic comorbidity[J]. J Allergy Clin Immunol, 2014, 134(4): 917-923.e7. [29] Stern D A, Morgan W J, Wright A L, et al. Poor airway function in early infancy and lung function by age 22 years: a non-selective longitudinal cohort study[J]. Lancet, 2007, 370(9589): 758-764. [30] Karmaus W, Mukherjee N, Janjanam V D, et al. Distinctive lung function trajectories from age 10 to 26 years in men and women and associated early life risk factors-a birth cohort study[J]. Respir Res, 2019, 20(1): 98. [31] Lau S, Matricardi P M, Wahn U, et al. Allergy and atopy from infancy to adulthood: messages from the German birth cohort MAS[J]. Ann Allergy Asthma Immunol, 2019, 122(1): 25-32. [32] Belgrave D C M, Buchan I, Bishop C, et al. Trajectories of lung function during childhood[J]. Am J Respir Crit Care Med, 2014, 189(9): 1101-1109. [33] Bui D S, Lodge C J, Perret J L, et al. Trajectories of asthma and allergies from 7 years to 53 years and associations with lung function and extrapulmonary comorbidity profiles: a prospective cohort study[J]. Lancet Respir Med, 2021, 9(4): 387-396. [34] Gonçalves I, Pereira A M, Jacinto T A Q, et al. Allergen sensitization associates with worse lung function parameters[J]. Eur Ann Allergy Clin Immunol, 2022, 54(3): 131-139. [35] Simpson A, Soderstrom L, Ahlstedt S, et al. IgE antibody quantification and the probability of wheeze in preschool children[J]. J Allergy Clin Immunol, 2005, 116(4): 744-749. [36] Anselmo M. Pediatric asthma controller therapy[J]. Paediatr Drugs, 2011, 13(1): 11-17. [37] Strunk R C, Sternberg A L, Szefler S J, et al. Long-term budesonide or nedocromil treatment, once discontinued, does not alter the course of mild to moderate asthma in children and adolescents[J]. J Pediatr, 2009, 154(5): 682-687. [38] Guilbert T W, Morgan W J, Zeiger R S, et al. Long-term inhaled corticosteroids in preschool children at high risk for asthma[J]. N Engl J Med, 2006, 354(19): 1985-1997. |