[1] Hu Y, Tanriverdi F, MacColl G S, et al. Kallmann's syndrome: molecular pathogenesis[J]. Int J Biochem Cell Biol, 2003,35(8):1157-1162.[2] Fechner A, Fong S, McGovern P. A review of Kallmann syndrome: genetics, pathophysiology, and clinical management[J]. Obstet Gynecol Surv, 2008,63 (3):189-194.[3] Ribeiro R S, Vieira T C, Abucham J. Reversible Kallmann syndrome: report of the first case with a KAL1 mutation and literature review[J]. Eur J Endocrinol, 2007,156(3):285-290.[4] Franco B, Guioli S, Pragliola A, et al. A gene deleted in Kallmann's syndrome shares homology with neural cell adhesion and axonal path-finding molecules[J]. Nature, 1991,353(6344):529-536.[5] Dode C, Levilliers J, Dupont J M, et al. Loss-of-function mutations in FGFR1 cause autosomal dominant Kallmann syndrome[J]. Nat Genet, 2003,33(4):463-465.[6] Falardeau J, Chung W C, Beenken A, et al. Decreased FGF8 signaling causes deficiency of gonadotropin-releasing hormone in humans and mice[J]. J Clin Invest, 2008,118(8):2822-2831.[7] Pitteloud N, Zhang C, Pignatelli D, et al. Loss-of-function mutation in the prokineticin 2 gene causes Kallmann syndrome and normosmic idiopathic hypogonadotropic hypogonadism[J]. Proc Natl Acad Sci U S A, 2007,104(44):17447-17452.[8] Dode C, Teixeira L, Levilliers J, et al. Kallmann syndrome: mutations in the genes encoding prokineticin-2 and prokineticin receptor-2[J]. PLoS Genet, 2006,2(10):e175.[9] Kim H G, Ahn J W, Kurth I, et al. WDR11, a WD protein that interacts with transcription factor EMX1, is mutated in idiopathic hypogonadotropic hypogonadism and Kallmann syndrome[J]. Am J Hum Genet, 2010,87(4):465-479.[10] Tsai P S, Gill J C. Mechanisms of disease: Insights into X-linked and autosomal-dominant Kallmann syndrome[J]. Nat Clin Pract Endocrinol Metab, 2006,2(3):160-171.[11] Ng P C, Henikoff S. SIFT: Predicting amino acid changes that affect protein function[J]. Nucleic Acids Res, 2003,31(13):3812-3814.[12] Adzhubei I A, Schmidt S, Peshkin L, et al. A method and server for predicting damaging missense mutations[J]. Nat Methods, 2010,7(4):248-249.[13] Schwarz J M, Rodelsperger C, Schuelke M, et al. MutationTaster evaluates disease-causing potential of sequence alterations[J]. Nat Methods, 2010,7(8):575-576.[14] Kim S H, Hu Y, Cadman S, et al. Diversity in fibroblast growth factor receptor 1 regulation: learning from the investigation of Kallmann syndrome[J]. J Neuroendocrinol, 2008,20(2):141-163.[15] Tsuge T, Shimokawa T, Horikoshi S, et al. Polymorphism in promoter region of Fcalpha receptor gene in patients with IgA nephropathy[J]. Hum Genet, 2001,108(2):128-133.[16] Yamada R, Tanaka T, Unoki M, et al. Association between a single-nucleotide polymorphism in the promoter of the human interleukin-3 gene and rheumatoid arthritis in Japanese patients, and maximum-likelihood estimation of combinatorial effect that two genetic loci have on susceptibility to the disease[J]. Am J Hum Genet, 2001,68(3):674-685.[17] Cole L W, Sidis Y, Zhang C, et al. Mutations in prokineticin 2 and prokineticin receptor 2 genes in human gonadotrophin-releasing hormone deficiency: molecular genetics and clinical spectrum[J]. J Clin Endocrinol Metab, 2008,93(9):3551-3559.[18] Badano J L, Katsanis N. Beyond Mendel: an evolving view of human genetic disease transmission[J]. Nat Rev Genet, 2002,3(10):779-789.[19] Carlton V E, Harris B Z, Puffenberger E G, et al. Complex inheritance of familial hypercholanemia with associated mutations in TJP2 and BAAT[J]. Nat Genet, 2003,34(1):91-96.[20] Pitteloud N, Quinton R, Pearce S, et al. Digenic mutations account for variable phenotypes in idiopathic hypogonadotropic hypogonadism[J]. J Clin Invest, 2007,117(2):457-463.[21] Gonzalez-Martinez D, Kim S H, Hu Y, et al. Anosmin-1 modulates fibroblast growth factor receptor 1 signaling in human gonadotropin-releasing hormone olfactory neuroblasts through a heparan sulfate-dependent mechanism[J]. J Neurosci, 2004,24(46):10384-10392.[22] Dode C, Hardelin J P. Kallmann syndrome: fibroblast growth factor signaling insufficiency?[J]. J Mol Med(Berl), 2004,82(11):725-734.[23] Gao Y Q, Danciger M, Ozgul R K, et al. Association of the Asn306Ser variant of the SP4 transcription factor and an intronic variant in the beta-subunit of transducin with digenic disease[J]. Mol Vis, 2007,13:287-292.[24] Muntoni F, Bonne G, Goldfarb L G, et al. Disease severity in dominant Emery Dreifuss is increased by mutations in both emerin and desmin proteins[J]. Brain, 2006,129(Pt 5):1260-1268.[25] Tosch V, Rohde H M, Tronchere H, et al. A novel PtdIns3P and PtdIns(3,5) P2 phosphatase with an inactivating variant in centronuclear myopathy[J]. Hum Mol Genet, 2006,15(21):3098-3106. |