[1] 中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2017年版)[J]. 中华糖尿病杂志, 2018, 10(1): 4-67.
[2] Tang W H, Kitai T, Hazen S L. Gut microbiota in cardiovascular health and disease[J].Circ Res, 2017, 120(7): 1183-1196.
[3] Croyal M, Saulnier P J, Aguesse A, et al. Plasma trimethylamine N-Oxide and risk of cardiovascular events in patients with type 2 diabetes[J]. J Clin Endocrinol Metab, 2020, 105(7): dgaa188.
[4] Heianza Y, Sun D, Li X, et al. Gut microbiota metabolites, amino acid metabolites and improvements in insulin sensitivity and glucose metabolism: the POUNDS lost trial[J]. Gut, 2019, 68(2): 263-270.
[5] Org E, Blum Y, Kasela S, et al. Relationships between gut microbiota, plasma metabolites, and metabolic syndrome traits in the METSIM cohort[J]. Genome Biol, 2017,18(1): 70.
[6] 何倩, 杨建, 陈冰婷, 等. 基于16S rRNA测序对2型糖尿病患者肠道菌群特征的分析[J]. 新疆医科大学学报, 2022, 45 (11): 1262-1268.
[7] 成彪,高凌云.氧化三甲胺与急性冠脉综合征的研究进展[J].国际心血管病杂志, 2019, 46(4): 216-218.
[8] Chen S, Henderson A, Petriello M C, et al. Trimethylamine-N-oxide binds and activates PERK to promote metabolic dysfunction[J]. Cell Metab, 2019, 30(6): 1141-1151.
[9] Miao J, Ling A V, Manthena P V, et al. Flavin-containing monooxygenase 3 as a potential player in diabetes-associated atherosclerosis[J]. Nat Commun, 2015, 6: 6498.
[10] Gao X, Liu X, Xu J, et al. Dietary trimethylamine-N-oxide exacerbates impaired glucose tolerance in mice fed a high fat diet[J]. J Biosci Bioeng, 2014, 118(4): 476-481.
[11] Dambrova M, Latkovskis G, Kuka J, et al. Diabetes is associated with higher trimethylamine-N-oxide plasma levels[J]. Exp Clin Endocrinol Diabetes, 2016, 124(4): 251-256.
[12] Shan Z, Sun T, Huang H, et al. Association between microbiota-dependent metabolite trimethylamine-N-oxide and type 2 diabetes[J]. Am J Clin Nutr, 2017, 106(3): 888-894.
[13] Tang W H W, Wang Z, Li X S, et al. Increased trimethylamine-N-oxide portends high mortality risk independent of glycemic control in patients with type 2 diabetes mellitus[J]. Clin Chem,2017, 63(1): 297-306.
[14] Zhuang R, Ge X, Han L, et al. Gut microbe-generated metabolite trimethylamine N-oxide and the risk of diabetes: a systematic review and dose-response meta-analysis[J]. Obes Rev, 2019, 20(6): 883-894.
[15] Papandreou C, Bulló M, Zheng Y, et al. Plasma trimethylamine-N-oxide and related metabolites are associated with type 2 diabetes risk in the Prevención con Dieta Mediterránea (PREDIMED) trial[J]. Am J Clin Nutr, 2018, 108(1): 163-173.
[16] Lemaitre R N, Jensen P N, Wang Z, et al. Association of trimethylamine N-oxide and related metabolites in plasma and incident type 2 diabetes: the cardiovascular health study[J]. JAMA Network Open, 2021, 4(8): e2122844.
[17] Alberti K G, Zimmet P Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation[J]. Diabet Med, 1998, 15(7): 539-553.
[18] Mueller D M, Allenspach M, Othman A, et al. Plasma levels of trimethylamine-N-oxide are confounded by impaired kidney function and poor metabolic control[J]. Atherosclerosis, 2015, 243: 638-644.
[19] Tang W H, Hazen S L. The contributory role of gut microbiota in cardiovascular disease[J]. J Clin Invest, 2014, 124: 4204-4211.
[20] Bennett B J, Aguiar Vallim T Q, Wang Z, et al. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation[J]. Cell Metab, 2013, 17: 49-60.
[21] Shan Z, Chen S, Sun T, et al. U-shaped association between plasma manganese levels and type 2 diabetes[J]. Environ Health Perspect, 2016, 124: 1876-1881.
[22] Gessner A, di Giuseppe R, Koch M, et al. Trimethylamine-N-oxide (TMAO) determined by LC-MS/MS: distribution and correlates in the population-based PopGen cohort[J]. Clin Chem Lab Med, 2020, 58(5): 733-740.
[23] 王丹萍,徐珒昭,张晓航等. 糖尿病与宿主肠道菌群的关系及饮食介导的菌群调控作用研究进展[J].食品科学, 2023, 44(15): 379-389.
[24] Weifei Z, Kymberleigh A R, Lin L, et al.Gut microbes impact stroke severity via the trimethylamine N-oxide pathway[J].Cell Host Microbe, 2021, 29(7): 1199-1208.
[25] Svingen G F, Schartum-Hansen H, Pedersen E R, et al. Prospective associations of systemic and urinary choline metabolites with incident type 2 diabetes[J]. Clin Chem, 2016, 62: 755-765.
[26] Lever M, George PM, Slow S, et al. Betaine and trimethylamine- N-oxide as predictors of cardiovascular outcomes show different patterns in diabetes mellitus: an observational study[J]. PLoS One, 2014, 9: e114969.
[27] Winther S A, Øllgaard J C, Tofte N, et al. Utilty of plasma concentration of trimethylamine N-oxide in predicting cardiovascular and renal complications in individuals with type 1 diabetes[J]. Diabetes Care, 2019, 42(8): 1512-1520.
[28] Xu J, Zhang J, Cai S, et al. Metabonomics studies of intact hepatic and renal cortical tissues from diabetic db/db mice using high-resolution magic-angle spinning 1H NMR spectroscopy[J]. Anal Bioanal Chem, 2009, 393(6-7): 1657-1668.
[29] Lupachyk S, Watcho P, Stavniichuk R, et al. Endoplasmic reticulum stress plays a key role in the pathogenesis of diabetic peripheral neuropathy[J]. Diabetes, 2013, 62(3): 944-952.
[30] Heianza Y, Sun D, Smith S R, et al. Changes in gut microbiota-related metabolites and long-term successful weight loss in response to weight-loss diets: the POUNDS lost trial[J]. Diabetes Care, 2018, 41(3): 413-419.
[31] Winther S A, Øllgaard J C, Hansen T W, et al. Plasma trimethylamine N-oxide and its metabolic precursors and risk of mortality, cardiovascular and renal disease in individuals with type 2-diabetesand albuminuria[J]. PLoS One, 2021, 16(3): e0244402.
[32] Tanase D M, Gosav E M, Neculae E, et al. Role of gut microbiota on onset and progression of microvascular complications of type 2 diabetes (T2DM)[J]. Nutrients, 2020, 12(12): 3719.
[33] Croci S, D'Apolito L I, Gasperi V, et al. Dietary strategies for management of metabolic syndrome: role of gut microbiota metabolites[J]. Nutrients, 2021, 13(5): 1389.
|