Journal of Capital Medical University ›› 2014, Vol. 35 ›› Issue (3): 278-283.doi: 10.3969/j.issn.1006-7795.2014.03.003
Previous Articles Next Articles
Wang Yongxing, Jiang Yongguang, Luo Yong, Zhao Jiahui, Chen Yatong, Han Yili, Lin Yunhua
Received:
2014-03-19
Online:
2014-06-21
Published:
2014-06-14
Supported by:
This study was supported by the National Natural Science Foundation of China(81341066), Beijing Health System Special Foundation for Building High-level Health Personnel(2013-2-003), The Science and Technology Development Foundation of Anzhen Hospital(2013Z03).
CLC Number:
Wang Yongxing, Jiang Yongguang, Luo Yong, Zhao Jiahui, Chen Yatong, Han Yili, Lin Yunhua. Hypoxia inducible factor-1α-dependent epithelial to mesenchymal transition under hypoxic conditions in prostate cancer cells[J]. Journal of Capital Medical University, 2014, 35(3): 278-283.
[1] Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013[J]. CA Cancer J Clin, 2013, 63(1):11-30. [2] Vaupel P, Kelleher D K, Hockel M. Oxygen status of malignant tumors: pathogenesis of hypoxia and significance for tumor therapy[J]. Semin Oncol, 2001, 28(2 Suppl 8):29-35. [3] Evans S M, Koch C J. Prognostic significance of tumor oxygenation in humans[J]. Cancer Lett, 2003, 195(1):1-16. [4] Parker C, Milosevic M, Toi A, et al. Polarographic electrode study of tumor oxygenation in clinically localized prostate cancer[J]. Int J Radiat Oncol Biol Phys, 2004, 58(3):750-757. [5] Cvetkovic D, Movsas B, Dicker A P, et al. Increased hypoxia correlates with increased expression of the angiogenesis marker vascular endothelial growth factor in human prostate cancer[J]. Urology, 2001, 57(4):821-825. [6] Movsas B, Chapman J D, Greenberg R E, et al. Increasing levels of hypoxia in prostate carcinoma correlate significantly with increasing clinical stage and patient age: An Eppendorf po(2) study[J]. Cancer, 2000, 89(9):2018-2024. [7] Carnell D M, Smith R E, Daley F M, et al. An immunohistochemical assessment of hypoxia in prostate carcinoma using pimonidazole: implications for radioresistance[J]. Int J Radiat Oncol Biol Phys, 2006, 65(1):91-99. [8] Vergis R, Corbishley C M, Norman A R, et al. Intrinsic markers of tumour hypoxia and angiogenesis in localised prostate cancer and outcome of radical treatment: A retrospective analysis of two randomised radiotherapy trials and one surgical cohort study[J]. Lancet Oncol, 2008, 9(4):342-351. [9] Berx G, Raspe E, Christofori G, et al. Pre-EMTting metastasis? Recapitulation of morphogenetic processes in cancer[J]. Clin Exp Metastasis, 2007, 24(8):587-597. [10] Morel A P, Lievre M, Thomas C, et al. Generation of breast cancer stem cells through epithelial-mesenchymal transition[J]. PLoS One, 2008, 3(8):e2888. [11] Hollier B G, Evans K, Mani S A. The epithelial-to-mesenchymal transition and cancer stem cells: A coalition against cancer therapies[J]. J Mammary Gland Biol Neoplasia, 2009, 14(1):29-43. [12] Derksen P W, Liu X, Saridin F, et al. Somatic inactivation of e-cadherin and p53 in mice leads to metastatic lobular mammary carcinoma through induction of anoikis resistance and angiogenesis[J]. Cancer Cell, 2006, 10(5):437-449. [13] Cano A, Perez-Moreno M A, Rodrigo I, et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing e-cadherin expression[J]. Nat Cell Biol, 2000, 2(2):76-83. [14] Bolos V, Peinado H, Perez-Moreno M A, et al. The transcription factor slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors[J]. J Cell Sci, 2003, 116(Pt 3):499-511. [15] Yang J, Mani S A, Donaher J L, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis[J]. Cell, 2004, 117(7):927-939. [16] Nieto M A. The snail superfamily of zinc-finger transcription factors[J]. Nat Rev Mol Cell Biol, 2002, 3(3):155-166. [17] Savagner P, Yamada K M, Thiery J P. The zinc-finger protein slug causes desmosome dissociation, an initial and necessary step for growth factor-induced epithelial-mesenchymal transition[J]. J Cell Biol, 1997, 137(6):1403-1419. [18] Cannito S, Novo E, Compagnone A, et al. Redox mechanisms switch on hypoxia-dependent epithelial-mesenchymal transition in cancer cells[J]. Carcinogenesis, 2008, 29(12):2267-2278. [19] Vaupel P, Mayer A. Hypoxia in cancer: Significance and impact on clinical outcome[J]. Cancer Metastasis Rev, 2007, 26(2):225-239. [20] Brown J M. The hypoxic cell: A target for selective cancer therapy eighteenth Bruce F. Cain memorial Award lecture[J]. Cancer Res, 1999, 59(23):5863-5870. [21] Tatum J L, Kelloff G J, Gillies R J, et al. Hypoxia: importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy[J]. Int J Radiat Biol, 2006, 82(10):699-757. [22] Hockel M, Schlenger K, Hockel S, et al. Hypoxic cervical cancers with low apoptotic index are highly aggressive[J]. Cancer Res, 1999, 59(18):4525-4528. [23] Hockel M, Vaupel P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects[J]. J Natl Cancer Inst, 2001, 93(4):266-276. [24] Moen I, Oyan A M, Kalland K H, et al. Hyperoxic treatment induces mesenchymal-to-epithelial transition in a rat adenocarcinoma model[J]. PLoS One, 2009, 4(7):e6381. [25] 韩毅力, 程永毅, 徐永刚.低氧条件下HIF-1α对HGF表达影响的观察[J].中华肿瘤防治杂志, 2012, 18(18):1377-1379. [26] Jiang Y G, Luo Y, He D L, et al. Role of wnt/beta-catenin signaling pathway in epithelial-mesenchymal transition of human prostate cancer induced by hypoxia-inducible factor-1alpha[J]. Int J Urol, 2007, 14(11):1034-1039. [27] Yang M H, Wu M Z, Chiou S H, et al. Direct regulation of twist by hif-1alpha promotes metastasis[J]. Nat Cell Biol, 2008, 10(3):295-305. [28] Imai T, Horiuchi A, Wang C, et al. Hypoxia attenuates the expression of E-cadherin via up-regulation of SNAIL in ovarian carcinoma cells[J]. Am J Pathol, 2003, 163(4):1437-1447. [29] Krishnamachary B, Berg-Dixon S, Kelly B, et al. Regulation of colon carcinoma cell invasion by hypoxia-inducible factor 1[J]. Cancer Res, 2003, 63(5):1138-1143. [30] 倪嘉延, 吴裕丹, 黄康华, 等.HIF-1α基因干扰对大鼠CBRH-7919肝癌细胞HIF-1α与VEGF表达影响的研究[J].中华肿瘤防治杂志, 2012, 18(22):1704-1708. [31] Giaccia A, Siim B G, Johnson R S. HIF-1 as a target for drug development[J]. Nat Rev Drug Discov, 2003, 2(10):803-811. [32] Belozerov V E, Van Meir E G. Hypoxia inducible factor-1: a novel target for cancer therapy[J]. Anticancer Drugs, 2005, 16(9):901-909. [33] Melillo G. Inhibiting hypoxia-inducible factor 1 for cancer therapy[J]. Mol Cancer Res, 2006, 4(9):601-605. [34] Brown L M, Cowen R L, Debray C, et al. Reversing hypoxic cell chemoresistance in vitro using genetic and small molecule approaches targeting hypoxia inducible factor-1[J]. Mol Pharmacol, 2006, 69(2):411-418. [35] Hofer T, Desbaillets I, Hopfl G, et al. Characterization of HIF-1 alpha overexpressing HeLa cells and implications for gene therapy[J]. Comp Biochem Physiol C Toxicol Pharmacol, 2002, 133(4):475-481. [36] Du R, Huang C, Bi Q, et al. URG11 mediates hypoxia-induced epithelial-to-mesenchymal transition by modulation of E-cadherin and beta-catenin[J]. Biochem Biophys Res Commun, 2010, 391(1):135-141. [37] Zhou B P, Deng J, Xia W, et al. Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition[J]. Nat Cell Biol, 2004, 6(10):931-940. [38] Singh A, Settleman J. Emt, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer[J]. Oncogene, 2010, 29(34):4741-4751. |
[1] | Jiang Mingxin, Su Yao, Xiong Tianyu, Ye Xiaobo, Jin Song, Xing Nianzeng, Jin Mulan, Yang Mingfu, Niu Yinong. The outcome of cytoreductive radical prostatectomy for prostate cancer patients with bone metastasis [J]. Journal of Capital Medical University, 2021, 42(6): 967-972. |
[2] | Wang Mingshuai, Xiong Tianyu, Jiang Mingxin, Qian Xiaosong, Wang Sihao, Cui Yun, Niu Yinong. The effect of modified apical dissection and periurethral structure preservation in the immediate continence recovery after laparoscopic radical prostatectomy [J]. Journal of Capital Medical University, 2021, 42(6): 973-977. |
[3] | Ye Xiaobo, Xiong Tianyu, Cui Yun, Wang Mingshuai, Yang Hui, An Zhuoling, Niu Yinong. Efficacy of abiraterone acetate combined with prednisone in the treatment of castration-resistant prostate cancer [J]. Journal of Capital Medical University, 2021, 42(6): 978-985. |
[4] | Bai Zhijie, Wang Xinsheng, Ma Hongshun, Liu Qian. Clinical study of multiparameter magnetic resonance imaging and ultrasound fusion navigation technology in prostate targeted puncture [J]. Journal of Capital Medical University, 2020, 41(4): 631-635. |
[5] | Xie Yingwei, Jin Shipeng, Li Shuang, Wang Yonghui, Wang Wei, Ping Hao, Liu Yuexin. Correlation between TMPRSS2-ERG fusion gene and survival rate of metastatic castration-resistant prostate cancer after chemotherapy [J]. Journal of Capital Medical University, 2020, 41(1): 103-107. |
[6] | Ping Hao, Ma Linxiang, Wang Mingshuai, Long Jun, Niu Yinong, Liu Yuexin, Xing Nianzeng. Expression and regulation of monocarboxylate transporters 4(MCT4) in prostate cancer [J]. Journal of Capital Medical University, 2019, 40(1): 59-64. |
[7] | Wang Wei, Su Jiaming, Yuan Dongbo, Zhang Wei, Chen Weihong, Sun Zhaolin, Zhu Jianguo. Detection of MAP1A expression in prostate cancer and its clinical characteristics [J]. Journal of Capital Medical University, 2019, 40(1): 65-71. |
[8] | Xie Yingwei, Jin Shipeng, Yan Wei, Wang Wei, Ping Hao, Liu Yuexin. Prevalence and prognostic significance of TMPRSS2-ERG fusion gene in prostate cancer with lymph node metastasis [J]. Journal of Capital Medical University, 2019, 40(1): 72-77. |
[9] | Zuo Lingkun, Yang Ronghui, Ma Hui, Zhou Ping, Kong Lu. Bioinformatics analysis about point mutation of exon 7 in LMNA in prostate tissues and cell lines [J]. Journal of Capital Medical University, 2017, 38(6): 884-890. |
[10] | Zhang Jiwei, Yan Yifu, Xia Ming. Clinical analysis of urinary complications of 125I seeds implant in patients of low-risk prostate cancer [J]. Journal of Capital Medical University, 2017, 38(2): 325-328. |
[11] | Wasilijiang Wahafu, Niu Yinong, Xing Nianzeng. Development and future of chemotherapy for prostate cancer [J]. Journal of Capital Medical University, 2016, 37(3): 299-306. |
[12] | Sun Jian, Jin Song, Zhao Hongying, Liu Yang, Jin Mulan, Xing Nianzeng, Niu Yinong. Correlation between 5-α reductase and biological behavior of prostate cancer [J]. Journal of Capital Medical University, 2016, 37(3): 307-312. |
[13] | Liu Zhibin, Jin Song, Zhang Junhui, Wang Jianwen, Tian Xiquan, Tian Long, Niu Yinong, Xing Nianzeng. "Sandwich" reconstruction of the urethrovesical anastomosis contributes to early continence in laparoscopic radical prostatectomy for high-risk prostate cancer [J]. Journal of Capital Medical University, 2016, 37(3): 313-317. |
[14] | Lin Yunhua, Jiang Yongguang, Fang Wei, Wang Junsheng, Zhou Shaoyou, Sun Xiumei. Expression of Bmi1 in prostate cancer and its clinical implication [J]. Journal of Capital Medical University, 2016, 37(3): 323-326. |
[15] | Ping Hao, Niu Yinong, Yang Feiya, Wang Mingshuai, Xing Nianzeng. Expression of CXCR4 and NDRG1 and its association with invasion and metastasis in prostate cancer [J]. Journal of Capital Medical University, 2016, 37(3): 327-330. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 80
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 47
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||