[1]McCarthy J, Minsky M, Rochester N, et al. A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence[C]. 1955-08-31.
[2]周学东, 郭静, 陈谦明, 等. 人工智能在口腔医学中的应用与发展[J]. 中华口腔医学杂志, 2020, 55(6): 361-365.
[3]周学东, 凌均棨, 梁景平, 等. 龋病临床治疗难度因素及处理[J]. 华西口腔医学杂志, 2017, 35(1): 1-7.
[4]Rigatti S J. Random forest[J]. J Insur Med, 2017, 47(1): 31-39.
[5]Dos Santos D F D, Tosta T A A, Silva A B, et al. Automated nuclei segmentation on dysplastic oral tissues using CNN[C]//2020 International Conference on Systems, Signals and Image Processing (IWSSIP), Niteroi: IEEE, 2020: 45-50.
[6]Liang Y T, Li D L, Deng D M, et al. AI-driven dental caries management strategies: from clinical practice to professional education and public self care[J]. Int Dent J, 2025, 75(4): 100827.
[7]Schneider L, Krasowski A, Pitchika V, et al. Assessment of CNNs, transformers, and hybrid architectures in dental image segmentation[J]. J Dent, 2025, 156: 105668.
[8]Li Y J, Huang Q, Jiang J, et al. Large language model-based biological age prediction in large-scale populations[J]. Nat Med, 2025, 31(9): 2977-2990.
[9]Chau R C W, Thu K M, Hsung R T C, et al. Self-monitoring of oral health using smartphone selfie powered by artificial intelligence: implications for preventive dentistry[J]. Oral Health Prev Dent, 2024, 22: 327-340.
[10]Birur P N, Sunny S P, Jena S, et al. Mobile health application for remote oral cancer surveillance[J]. J Am Dent Assoc, 2015, 146(12): 886-894.
[11]Zheng L W, Wang H L, Mei L, et al. Artificial intelligence in digital cariology: a new tool for the diagnosis of deep caries and pulpitis using convolutional neural networks[J]. Ann Transl Med, 2021, 9(9): 763.
[12]Moidu N P, Sharma S, Chawla A, et al. Deep learning for categorization of endodontic lesion based on radiographic periapical index scoring system[J]. Clin Oral Investig, 2022, 26(1): 651-658.
[13]Qu Y, Lin Z Z, Yang Z J, et al. Machine learning models for prognosis prediction in endodontic microsurgery[J]. J Dent, 2022, 118: 103947.
[14]林翔, 傅裕杰, 任根强, 等. U-Net神经网络分割锥形束CT影像中下颌磨牙牙体与牙髓腔及其准确性验证[J]. 上海口腔医学, 2022, 31(5): 454-459.
[15]Gao X, Xin X, Li Z, et al. Predicting postoperative pain following root canal treatment by using artificial neural network evaluation[J]. Sci Rep, 2021, 11(1): 17243.
[16]黄丽珊, 劳思颖, 李思雨, 等. 自主式机器人辅助显微根尖手术治疗1例[J]. 牙体牙髓牙周病学杂志, 2024, 29(8): 480-482.
[17]孙柯, 尚振华, 佟洪波. 一种自动化牙髓治疗机器人: CN202411566002.7[P]. 2025-02-11.
[18]Lee J H, Kim D H, Jeong S N, et al. Diagnosis and prediction of periodontally compromised teeth using a deep learning-based convolutional neural network algorithm[J]. J Periodontal Implant Sci, 2018, 48(2): 114-123.
[19]Balaei A T, De Chazal P, Eberhard J, et al. Automatic detection of periodontitis using intra-oral images[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2017, 2017: 3906-3909.
[20]Yang M, Li C S, Yang W, et al. Accurate gingival segmentation from 3D images with artificial intelligence: an animal pilot study[J]. Prog Orthod, 2023, 24(1): 14.
[21]Tan M H, Cui Z M, Li Y, et al. PerioAI: a digital system for periodontal disease diagnosis from an intra-oral scan and cone-beam CT image[J]. Cell Rep Med, 2025, 6(6): 102186.
[22]Liu L Z, Xu J W, Huan Y X, et al. A smart dental health-IoT platform based on intelligent hardware, deep learning, and mobile terminal[J]. IEEE J Biomed Health Inform, 2020, 24(3): 898-906.
[23]Lerner H, Mouhyi J, Admakin O, et al. Artificial intelligence in fixed implant prosthodontics: a retrospective study of 106 implant-supported monolithic zirconia crowns inserted in the posterior Jaws of 90 patients[J]. BMC Oral Health, 2020, 20(1): 80.
[24]Zhang B, Dai N, Tian S K, et al. The extraction method of tooth preparation margin line based on S-octree CNN[J]. Int J Numer Method Biomed Eng, 2019, 35(10): e3241.
[25]Lee J H, Jeong S N. Efficacy of deep convolutional neural network algorithm for the identification and classification of dental implant systems, using panoramic and periapical radiographs: a pilot study[J]. Medicine, 2020, 99(26): e20787.
[26]Da Mata Santos R P, Vieira Oliveira Prado H E, Soares Aranha Neto I, et al. Automated identification of dental implants using artificial intelligence[J]. Int J Oral Maxillofac Implants, 2021, 36(5): 918-923.
[27]Benakatti V B, Nayakar R P, Anandhalli M. Machine learning for identification of dental implant systems based on shape-a descriptive study[J]. J Indian Prosthodont Soc, 2021, 21(4): 405-411.
[28]Matin I, Hadzistevic M, Vukelic D, et al. Development of an expert system for the simulation model for casting metal substructure of a metal-ceramic crown design[J]. Comput Methods Programs Biomed, 2017, 146: 27-35.
[29]Wei J Q, Peng M D, Li Q, et al. Evaluation of a novel computer color matching system based on the improved back-propagation neural network model[J]. J Prosthodont, 2018, 27(8): 775-783.
[30]Carrillo-Perez F, Pecho O E, Morales J C, et al. Applications of artificial intelligence in dentistry: a comprehensive review[J]. J Esthet Restor Dent, 2022, 34(1): 259-280.
[31]Li Z W, Xie R, Bai S Z, et al. Implant placement with an autonomous dental implant robot: a clinical report[J]. J Prosthet Dent, 2025, 133(2): 340-345.
[32]Xie R, Liu Y C, Wei H B, et al. Clinical evaluation of autonomous robotic-assisted full-arch implant surgery: a 1-year prospective clinical study[J]. Clin Oral Implants Res, 2024, 35(4): 443-453.
[33]Wang M Z, Liu F, Zhao X, et al. Robot-assisted surgery for dental implant placement: a narrative review[J]. J Dent, 2024, 146: 105034.
[34]Poedjiastoeti W, Suebnukarn S. Application of convolutional neural network in the diagnosis of jaw tumors[J]. Healthc Inform Res, 2018, 24(3): 236-241.
[35]Chai Z K, Mao L, Chen H, et al. Improved diagnostic accuracy of ameloblastoma and odontogenic keratocyst on cone-beam CT by artificial intelligence[J]. Front Oncol, 2021, 11: 793417.
[36]Tong Y H, Jie B M, Wang X B, et al. Is convolutional neural network accurate for automatic detection of zygomatic fractures on computed tomography?[J]. J Oral Maxillofac Surg, 2023, 81(8): 1011-1020.
[37]Wang X B, Xu Z N, Tong Y H, et al. Detection and classification of mandibular fracture on CT scan using deep convolutional neural network[J]. Clin Oral Investig, 2022, 26(6): 4593-4601.
[38]Achararit P, Manaspon C, Jongwannasiri C, et al. Impacted lower third molar classification and difficulty index assessment: comparisons among dental students, general practitioners and deep learning model assistance[J]. BMC Oral Health, 2025, 25(1): 152.
[39]Chindanuruks T, Jindanil T, Cumpim C, et al. Development and validation of a deep learning algorithm for the classification of the level of surgical difficulty in impacted mandibular third molar surgery[J]. Int J Oral Maxillofac Surg, 2025, 54(5): 452-460.
[40]香港大学牙医学院. 香港大学牙医学院开设全球首创人工智能诊所AI工具精准预测口腔癌风险[EB/OL]. (2025-05-11)[2025-10-20]. https://www.hku.hk/press/c_news_detail_28304.html.
[41]Choi H I, Jung S K, Baek S H, et al. Artificial intelligent model with neural network machine learning for the diagnosis of orthognathic surgery[J]. J Craniofac Surg, 2019, 30(7): 1986-1989.
[42]龚蓓文, 常荍, 左飞飞, 等. 基于卷积神经网络的头影测量自动定点研究[J]. 中华口腔医学杂志, 2023, 58(12): 1249-1256.
[43]Xu X J, Liu C, Zheng Y Y. 3D tooth segmentation and labeling using deep convolutional neural networks[J]. IEEE Trans Vis Comput Graph, 2019, 25(7): 2336-2348.
[44]Tong C, Liang B Y, Li J, et al. A deep automated skeletal bone age assessment model with heterogeneous features learning[J]. J Med Syst, 2018, 42(12): 249.
[45]Liu J L, Li S H, Cai Y M, et al. Automated radiographic evaluation of adenoid hypertrophy based on VGG-Lite[J]. J Dent Res, 2021, 100(12): 1337-1343.
[46]Xie L Z, Tang W, Izadikhah I, et al. Development of a multi-stage model for intelligent and quantitative appraising of skeletal maturity using cervical vertebras cone-beam CT images of Chinese girls[J]. Int J Comput Assist Radiol Surg, 2022, 17(4): 761-773.
[47]Huang J L, Chan I T, Wang Z X, et al. Evaluation of four machine learning methods in predicting orthodontic extraction decision from clinical examination data and analysis of feature contribution[J]. Front Bioeng Biotechnol, 2024, 12: 1483230.
[48]张华, 李哲, 王锐. 口腔正畸治疗过程中的牙齿移动轨迹预测方法与流程: CN113876419A[P]. 2022-01-04.
[49]LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
[50] 四川大学华西口腔医院. 我院华西口腔智联大模型入选医学人工智能创新与实践典型案例[EB/OL]. (2025-09-29)[2025-11-08]. https://www.hxkq.org/Html/News/Articles/16797.html
[51] 北京口腔医院. 震撼首发 | 我院发布全国首款实用级正畸智能体B-AI[EB/OL]. (2025-11-07) [2025-11-04]. https://mp.weixin.qq.com/s/5Txce_5elcs6XVDkYNKyKg.
[52] 青岛市口腔医院. 青岛市口腔智慧诊断系统正式发布[EB/OL]. (2025-09-18) [2025-11-04]. https://mp.weixin.qq.com/s/WF1h65erpzz1zn4a11LpDw.
[53] 朱思颖, 朱锦怡, 唐雯,等. 基于大模型与双路径检索的颞下颌关节疾病临床辅助诊断系统研发[C]. 中华口腔医学会口腔医学计算机专业委员会第 23 次口腔医学数字化应用学术会议, 西安, 2025.
[54] 朱思颖, 朱锦怡, 周山,等. 面向数字口腔医学的复杂临床推理知识增强框架研究[C]. 中华医学会第十四次数字医学学术年会会议, 上海, 2025.
[55]Holzinger A, Langs G, Denk H, et al. Causability and explainability of artificial intelligence in medicine[J]. Wiley Interdiscip Rev Data Min Knowl Discov, 2019, 9(4): e1312.
[56]Tjoa E, Guan C T. A survey on explainable artificial intelligence (XAI): toward medical XAI[J]. IEEE Trans Neural Netw Learn Syst, 2021, 32(11): 4793-4813.
[57]Finlayson S G, Subbaswamy A, Singh K, et al. The clinician and dataset shift in artificial intelligence[J]. N Engl J Med, 2021, 385(3): 283-286.
[58]Ding B C, Zhang Z, Liang Y R, et al. Detection of dental caries in oral photographs taken by mobile phones based on the YOLOv3 algorithm[J]. Ann Transl Med, 2021, 9(21): 1622.
[59]Akwaid Z J, Almousa E. Shaping the future of orthodontics with artificial intelligence: an overview of innovations today, insights for tomorrow[J]. Australasian Orthodontic Journal, 2025, 41(1): 88-99.
[60]Gerke S, Minssen T, Cohen G. Chapter 12-ethical and legal challenges of artificial intelligence-driven healthcare[M]//Bohr A, Memarzadeh K. Artificial Intelligence in Healthcare. New York: Academic Press, 2020: 295-336
[61]Price W N 2nd, Gerke S, Cohen I G. Potential liability for physicians using artificial intelligence[J]. JAMA, 2019, 322(18): 1765-1766.
[62]Topol E J. High-performance medicine: the convergence of human and artificial intelligence[J]. Nat Med, 2019, 25(1): 44-56.
[63]Morley J, Machado C C V, Burr C, et al. The ethics of AI in health care: a mapping review[J]. Soc Sci Med, 2020, 260: 113172.
|