[1]Spetzler R F, Mcdougall C G, Zabramski J M, et al. The barrow ruptured aneurysm trial: 6-year results[J]. J Neurosurg, 2015, 123(3): 609-617.
[2]Lawton M T, Vates G E. Subarachnoid hemorrhage[J]. N Engl J Med, 2017, 377(3): 257-266.
[3]Roy P, Godbole A A, Banjan T, et al. Artificial intelligence innovations in cerebrovascular neurosurgery: a systematic review of cutting-edge applications[DB/OL]. [2024-10-12]. https://doi.org/10.21203/rs.3.rs-4435188/v1.
[4]Mensah E, Pringle C, Roberts G, et al. Deep learning in the management of intracranial aneurysms and cerebrovascular diseases: a review of the current literature[J]. World Neurosurg, 2022, 161: 39-45.
[5]Jiang F, Jiang Y, Zhi H, et al. Artificial intelligence in healthcare: past, present and future[J]. Stroke Vasc Neurol, 2017, 2(4): 230-243.
[6]Chen X, Lei Y, Su J B, et al. A review of artificial intelligence in cerebrovascular disease imaging: applications and challenges[J]. Curr Neuropharmacol, 2022, 20(7): 1359-1382.
[7]Huang C, Wang J, Wang S H, et al. Applicable artificial intelligence for brain disease: a survey[J]. Neurocomputing, 2022, 504: 223-239.
[8]Senders J T, Staples P C, Karhade A V, et al. Machine learning and neurosurgical outcome prediction: a systematic review[J]. World Neurosurg, 2018, 109: 476-486.e1.
[9]Mohd Faizal A S, Thevarajah T M, Khor S M, et al. A review of risk prediction models in cardiovascular disease: conventional approach vs. artificial intelligent approach[J]. Comput Methods Programs Biomed, 2021, 207: 106190.
[10]Obermeyer Z, Emanuel E J. Predicting the future-big data, machine learning, and clinical medicine[J]. N Engl J Med, 2016, 375(13): 1216-1219.
[11]Gilotra K, Swarna S, Mani R, et al. Role of artificial intelligence and machine learning in the diagnosis of cerebrovascular disease[J]. Front Hum Neurosci, 2023, 17: 1254417.
[12]Lareyre F, Chaudhuri A, Behrendt C A, et al. Artificial intelligence-based predictive models in vascular diseases[J]. Semin Vasc Surg, 2023, 36(3): 440-447.
[13]Singh M, Kumar A, Khanna N N, et al. Artificial intelligence for cardiovascular disease risk assessment in personalised framework: a scoping review[J]. EClinicalMedicine, 2024, 73: 102660.
[14]Jamthikar A D, Gupta D, Saba L C, et al. Artificial intelligence framework for predictive cardiovascular and stroke risk assessment models: a narrative review of integrated approaches using carotid ultrasound[J]. Comput Biol Med, 2020, 126: 104043.
[15]Cumpston M, Li T J, Page M J, et al. Updated guidance for trusted systematic reviews: a new edition of the Cochrane Handbook for Systematic Reviews of Interventions[J]. Cochrane Database Syst Rev, 2019, 10: ED000142.
[16]Boyd C, Brown G, Kleinig T, et al. Machine learning quantitation of cardiovascular and cerebrovascular disease: a systematic review of clinical applications[J]. Diagnostics, 2021, 11(3): 551.
[17]Abedi V, Razavi S M, Khan A, et al. Artificial intelligence: a shifting paradigm in Cardio-Cerebrovascular medicine[J]. J Clin Med, 2021, 10(23): 5710.
[18]Hunt E B. Artificial intelligence[M]. Washington: Academic Press, 2014.
[19]Mccarthy J. Mathematical logic in artificial intelligence[J]. Daedalus, 1988: 297-311.
[20]Smolensky P. Connectionist AI, symbolic AI, and the brain[J]. Artif Intell Rev, 1987, 1(2): 95-109.
[21]Fahlman S E, Hinton G E. Connectionist architectures for artificial intelligence[J]. Computer, 1987, 20(1): 100-109.
[22]Cortes C, Vapnik V. Support-vector networks[J]. Mach Learn, 1995, 20(3): 273-297.
[23]Drucker H, Burges C J, Kaufman L, et al. Support vector regression machines[C]//Proceedings of the 10th International Conference on Neural Information Processing Systems. Cambridge: ACM, 1996: 155-161.
[24]Giger M L. Machine learning in medical imaging[J]. J Am Coll Radiol, 2018, 15(3 Pt B): 512-520.
[25]Suzuki K. Overview of deep learning in medical imaging[J]. Radiol Phys Technol, 2017, 10(3): 257-273.
[26]Beam A L, Kohane I S. Big data and machine learning in health care[J]. JAMA, 2018, 319(13): 1317-1318.
[27]Lecun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
[28]Shen D G, Wu G R, Suk H I. Deep learning in medical image analysis[J]. Annu Rev Biomed Eng, 2017, 19: 221-248.
[29]Razzak M I, Naz S, Zaib A. Deep learning for medical image processing: Overview, challenges and the future[M]// Dey M, Ashour A S, Borra S. Classification in bioApps: automation of decision making. Cham: Springer, 2018: 323-350.
[30]Litjens G, Kooi T, Bejnordi B E, et al. A survey on deep learning in medical image analysis[J]. Med Image Anal, 2017, 42: 60-88.
[31]Suganyadevi S, Seethalakshmi V, Balasamy K. A review on deep learning in medical image analysis[J]. Int J Multimed Inf Retr, 2022, 11(1): 19-38.
[32]Wang F, Casalino L P, Khullar D. Deep learning in medicine-promise, progress, and challenges[J]. JAMA Intern Med, 2019, 179(3): 293-294.
[33]Prabhakar S K, Won D O. Medical text classification using hybrid deep learning models with multihead attention[J]. Comput Intell Neurosci, 2021, 2021: 9425655.
[34]An J, Ding W, Lin C. ChatGPT: tackle the growing carbon footprint of generative AI[J]. Nature, 2023, 615(7953): 586.
[35]Roumeliotis K I, Tselikas N D. Chatgpt and open-ai models: a preliminary review[J]. Future Internet, 2023, 15(6): 192.
[36]Kalla D, Smith N, Samaa F, et al. Study and analysis of chat GPT and its impact on different fields of study[J]. Int J Innov Sci Res Technol, 2023, 8(3): 7.
[37]Altunisik E. Artificial intelligence and cerebrovascular diseases: ChatGPT model[J]. Cerebrovasc Dis, 2024, 53(3): 354-358.
[38]Biswas S S. Role of chat GPT in public health[J]. Ann Biomed Eng, 2023, 51(5): 868-869.
[39]Johnson C O, Nguyen M, Roth G A, et al. Global, regional, and national burden of stroke, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016[J]. Lancet Neurol, 2019, 18(5): 439-458.
[40]Wang W Z, Jiang B, Sun H X, et al. Prevalence, incidence, and mortality of stroke in China: results from a nationwide population-based survey of 480 687 adults[J]. Circulation, 2017, 135(8): 759-771.
[41]Powers W J, Rabinstein A A, Ackerson T, et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association[J]. Stroke, 2019, 50(12): e344-e418.
[42]Zhang R, Zhao L, Lou W, et al. Automatic segmentation of acute ischemic stroke from DWI using 3-D fully convolutional DenseNets[J]. IEEE Trans Med Imaging, 2018, 37(9): 2149-2160.
[43]Winzeck S, Hakim A, McKinley R, et al. ISLES 2016 and 2017-Benchmarking ischemic stroke lesion outcome prediction based on multispectral MRI[J]. Front Neurol, 2018, 9: 679.
[44]Xiong Y Y, Campbell B C V, Schwamm L H, et al. Tenecteplase for ischemic stroke at 4.5 to 24 hours without thrombectomy[J]. N Engl J Med, 2024, 391(3): 203-212.
[45]Luo L Y, Liu P, Ye W X, et al. CT perfusion parameter estimation in stroke using neural network with transformer and physical model priors[J]. Comput Biol Med, 2024, 182: 109134.
[46]Xu Y, Yang X L, Huang H, et al. Extreme gradient boosting model has a better performance in predicting the risk of 90-day readmissions in patients with ischaemic stroke[J]. J Stroke Cerebrovasc Dis, 2019, 28(12): 104441.
[47]Jing J, Liu Z Y, Guan H, et al. A deep learning system to predict recurrence and disability outcomes in patients with transient ischemic attack or ischemic stroke[J]. Advanced Intelligent Systems, 2023, 5(4): 2200240.
[48]Cheng J, Liu Z Y, Guan H, et al. Brain age estimation from MRI using cascade networks with ranking loss[J]. IEEE Trans Med Imaging, 2021, 40(12): 3400-3412.
[49]Liu H, Jing J, Jiang J Y, et al. Exploring the link between brain topological resilience and cognitive performance in the context of aging and vascular risk factors: a cross-ethnicity population-based study[J]. Sci Bull (Beijing), 2024, 69(17): 2735-2744.
[50]Jin F P, Zou M, Peng X Y, et al. Deep learning-enhanced internet of things for activity recognition in post-stroke rehabilitation[J]. IEEE J Biomed Health Inform, 2024, 28(7): 3851-3859.
[51]Kadirvelu B, Gavriel C, Nageshwaran S, et al. A wearable motion capture suit and machine learning predict disease progression in Friedreich’s ataxia[J]. Nat Med, 2023, 29(1): 86-94.
[52]Oubre B, Lee S I. Detection and assessment of point-to-point movements during functional activities using deep learning and kinematic analyses of the stroke-affected wrist[J]. IEEE J Biomed Health Inform, 2024, 28(2): 1022-1030.
[53]Zhang W S, Ling Y, Chen Z L, et al. Wearable sensor-based quantitative gait analysis in Parkinson's disease patients with different motor subtypes[J]. NPJ Digit Med, 2024, 7(1): 169.
[54]Abedi A, Colella T J F, Pakosh M, et al. Artificial intelligence-driven virtual rehabilitation for people living in the community: a scoping review[J]. NPJ Digit Med, 2024, 7(1): 25.
[55]Zhang R Q, Feng S S, Hu N, et al. Hybrid brain-computer interface controlled soft robotic glove for stroke rehabilitation[J]. IEEE J Biomed Health Inform, 2024, 28(7): 4194-4203.
[56]Gao S, Chen J, Chen X, et al. Temporal dynamics and physical priori multimodal network for rehabilitation physical training evaluation[J]. IEEE J Biomed Health Inform, 2024, 28(9): 5613-5623.
[57]Rymer M M. Hemorrhagic stroke: intracerebral hemorrhage[J]. Mo Med, 2011, 108(1): 50-54.
[58]Vangen-Lønne A M, Wilsgaard T, Johnsen S H, et al. Declining incidence of ischemic stroke: what is the impact of changing risk factors? the Tromsø study 1995 to 2012[J]. Stroke, 2017, 48(3): 544-550.
[59]Forman R, Slota K, Ahmad F, et al. Intracerebral hemorrhage outcomes in the very elderly[J]. J Stroke Cerebrovasc Dis, 2020, 29(5): 104695.
[60]Wang X Y, Shen T, Yang S, et al. A deep learning algorithm for automatic detection and classification of acute intracranial hemorrhages in head CT scans[J]. Neuroimage Clin, 2021, 32: 102785.
[61]Guo R, Zhang R J, Liu R, et al. Machine learning-based approaches for prediction of patients' functional outcome and mortality after spontaneous intracerebral hemorrhage[J]. J Pers Med, 2022, 12(1): 112.
[62]Chilamkurthy S, Ghosh R, Tanamala S, et al. Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study[J]. Lancet, 2018, 392(10162): 2388-2396.
[63]Li N, Ding S, Liu Z, et al. A deep learning-based framework for predicting intracerebral hemorrhage hematoma expansion using head non-contrast CT scan[J]. Acad Radiol, 2024, 32(1): 347-358.
[64]Suo Y, Xie X, Zhang Z, et al. Mobile 0.23 T MRI detects cerebral infarction in patients with minor ischemic stroke or TIA[J]. Stroke, 2024, 55(9): e249-e251.
|