Journal of Capital Medical University ›› 2019, Vol. 40 ›› Issue (6): 972-981.doi: 10.3969/j.issn.1006-7795.2019.06.029
Previous Articles Next Articles
Wang Tiantian1, Gao Chenchen1, Li Lisheng2, Xu Jingdong1
Received:
2019-09-23
Online:
2019-11-21
Published:
2019-12-18
Supported by:
CLC Number:
Wang Tiantian, Gao Chenchen, Li Lisheng, Xu Jingdong. Research progress on the correlation between the function of gut macrophages and inflammatory bowel disease and intestinal tumors[J]. Journal of Capital Medical University, 2019, 40(6): 972-981.
[1] Na Y R, Stakenborg M, Seok S H, et al. Macrophages in intestinal inflammation and resolution:a potential therapeutic target in IBD[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(9):531-543. [2] Zhao G, Liu L, Peek R J, et al. Activation of epidermal growth factor receptor in macrophages mediates feedback inhibition of M2 polarization and gastrointestinal tumor cell growth[J]. J Biol Chem, 2016, 291(39):20462-20472. [3] Sartor R B. Microbial influences in inflammatory bowel diseases[J]. Gastroenterology, 2008, 134(2):577-594. [4] Johnson K J, Ward P A, Striker G, et al. A study of the origin of pulmonary macrophages using the Chediak-Higashi marker[J]. Am J Pathol,1980,101(2):365-374. [5] Gordon S, Taylor P R. Monocyte and macrophage heterogeneity[J].Nat Rev Immunol, 2005, 5(12):953-964. [6] Geissmann F, Jung S, Littman D R. Blood monocytes consist of two principal subsets with distinct migratory properties[J]. Immunity, 2003, 19(1):71-82. [7] Strauss-Ayali D, Conrad S M, Mosser D M. Monocyte subpopulations and their differentiation patterns during infection[J].J Leukoc Biol, 2007, 82(2):244-252. [8] Mowat A M, Bain C C. Mucosal macrophages in intestinal homeostasis and inflammation[J].J Innate Immun, 2011, 3(6):550-564. [9] Gren S T, Grip O. Role of monocytes and intestinal macrophages in crohn's disease and ulcerative colitis[J]. Inflamm Bowel Dis, 2016, 22(8):1992-1998. [10] Shouval D S, Biswas A, Goettel J A, et al. Interleukin-10 receptor signaling in innate immune cells regulates mucosal immune tolerance and anti-inflammatory macrophage function[J]. Immunity, 2014, 40(5):706-719. [11] Bain C C, Mowat A M. Intestinal macrophages-specialised adaptation to a unique environment[J].Eur J Immunol, 2011, 41(9):2494-2498. [12] Passlick B, Flieger D, Ziegler-Heitbrock H W. Identification and characterization of a novel monocyte subpopulation in human peripheral blood[J]. Blood, 1989, 74(7):2527-2534. [13] Auffray C, Fogg D, Garfa M, et al. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior[J]. Science, 2007, 317(5838):666-670. [14] Hobbs S, Reynoso M, Geddis A V, et al. LPS-stimulated NF-kappaB p65 dynamic response marks the initiation of TNF expression and transition to IL-10 expression in RAW 264.7 macrophages[J]. Physiol Rep, 2018, 6(21):e13914. [15] Hirotani T, Lee P Y, Kuwata H, et al. The nuclear IkappaB protein IkappaBNS selectively inhibits lipopolysaccharide-induced IL-6 production in macrophages of the colonic lamina propria[J]. J Immunol, 2005, 174(6):3650-3657. [16] Weinhage T, Dabritz J, Brockhausen A, et al. Granulocyte macrophage colony-stimulating factor-activated CD39+/CD73+ murine monocytes modulate intestinal inflammation via induction of regulatory T cells[J]. Cell Mol Gastroenterol Hepatol, 2015, 1(4):433-449. [17] Kamada N, Hisamatsu T, Okamoto S, et al. Unique CD14 intestinal macrophages contribute to the pathogenesis of crohn disease via IL-23/IFN-gamma axis[J]. J Clin Invest, 2008, 118(6):2269-2280. [18] Simon J M, Davis J P, Lee S E, et al. Alterations to chromatin in intestinal macrophages link IL-10 deficiency to inappropriate inflammatory responses[J]. Eur J Immunol,2016,46(8):1912-1925. [19] Mosser D M, Edwards J P. Exploring the full spectrum of macrophage activation[J]. Nat Rev Immunol, 2008, 8(12):958-969. [20] Niess J H, Adler G. Enteric flora expands gut lamina propria CX3CR1+ dendritic cells supporting inflammatory immune responses under normal and inflammatory conditions[J]. J Immunol, 2010, 184(4):2026-2037. [21] Spoettl T, Hausmann M, Menzel K, et al. Role of soluble factors and three-dimensional culture in in vitro differentiation of intestinal macrophages[J]. World J Gastroenterol, 2007, 13(7):1032-1041. [22] Teng O, Ang C, Guan X L. Macrophage-bacteria interactions-a lipid-centric relationship[J]. Front Immunol, 2017, 8:1836-1853. [23] Lee S H, Starkey P M, Gordon S. Quantitative analysis of total macrophage content in adult mouse tissues. Immunochemical studies with monoclonal antibody F4/80[J]. J Exp Med, 1985,161(3):475-489. [24] Wehner S, Engel D R. Resident macrophages in the healthy and inflamed intestinal muscularis externa[J]. Pflugers Arch, 2017, 469(3-4):541-552. [25] Ghosh S, Khatua S, Acharya K. Crude polysaccharide from a wild mushroom enhances immune response in murine macrophage cells by TLR/NF-kappaB pathway[J].J Pharm Pharmacol, 2019, 71(8):1311-1323. [26] Kang G D, Kim D H. Poncirin and its metabolite ponciretin attenuate colitis in mice by inhibiting LPS binding on TLR4 of macrophages and correcting Th17/Treg imbalance[J]. J Ethnopharmacol, 2016, 189:175-185. [27] Regan T, Nally K, Carmody R, et al. Identification of TLR10 as a key mediator of the inflammatory response to Listeria monocytogenes in intestinal epithelial cells and macrophages[J]. J Immunol, 2013, 191(12):6084-6092. [28] Chavez-Galan L, Olleros M L, Vesin D, et al. Much more than M1 and M2 macrophages, there are also CD169+ and TCR+ macrophages[J]. Front Immunol, 2015, 6:263-278. [29] Arnold C E, Whyte C S, Gordon P, et al. A critical role for suppressor of cytokine signalling 3 in promoting M1 macrophage activation and function in vitro and in vivo[J].Immunology, 2014, 141(1):96-110. [30] Shen K, Zheng S S, Park O, et al. Activation of innate immunity (NK/IFN-gamma) in rat allogeneic liver transplantation:contribution to liver injury and suppression of hepatocyte proliferation[J]. Am J Physiol Gastrointest Liver Physiol, 2008, 294(4):G1070-G1077. [31] Yamamoto M, Sato S, Hemmi H, et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway[J]. Science, 2003, 301(5633):640-643. [32] Haribhai D, Ziegelbauer J, Jia S, et al. Alternatively activated macrophages boost induced regulatory T and Th17 cell responses during immunotherapy for colitis[J]. J Immunol, 2016, 196(8):3305-3317. [33] Kolls J K, Linden A. Interleukin-17 family members and inflammation[J]. Immunity, 2004, 21(4):467-476. [34] Edwards J P, Zhang X, Frauwirth K A, et al. Biochemical and functional characterization of three activated macrophage populations[J]. J Leukoc Biol,2006,80(6):1298-1307. [35] Zhou X, Li W, Wang S, et al. YAP aggravates inflammatory bowel disease by regulating M1/M2 macrophage polarization and gut microbial homeostasis[J]. Cell Rep, 2019, 27(4):1176-1189. [36] Little A C, Pathanjeli P, Wu Z, et al. IL-4/IL-13 stimulated macrophages enhance breast cancer invasion via rho-GTPase regulation of synergistic VEGF/CCL-18 signaling[J]. Front Oncol, 2019, 9:456-469. [37] Gordon S. Alternative activation of macrophages[J]. Nat Rev Immunol, 2003, 3(1):23-35. [38] Jaguin M, Houlbert N, Fardel O, et al. Polarization profiles of human M-CSF-generated macrophages and comparison of M1-markers in classically activated macrophages from GM-CSF and M-CSF origin[J]. Cell Immunol, 2013, 281(1):51-61. [39] Barros M H, Hauck F, Dreyer J H, et al. Macrophage polarisation:an immunohistochemical approach for identifying M1 and M2 macrophages[J].PLoS One, 2013, 8(11):e80908. [40] Jeong D, Kim H Y, Chung D H. Sodium chloride inhibits IFN-gamma, but not IL-4, production by invariant NKT cells[J].J Leukoc Biol, 2018, 103(1):99-106. [41] Dhakal M, Hardaway J C, Guloglu F B, et al. IL-13Ralpha1 is a surface marker for M2 macrophages influencing their differentiation and function[J].Eur J Immunol, 2014, 44(3):842-855. [42] Hyvarinen K, Holopainen M, Skirdenko V, et al. Mesenchymal stromal cells and their extracellular vesicles enhance the anti-inflammatory phenotype of regulatory macrophages by downregulating the production of interleukin (IL)-23 and IL-22[J].Front Immunol, 2018, 9:771-784. [43] Hutchinson J A, Riquelme P, Bach C, et al. Donor-specific Anti-HLA antibodies present in pooled human serum do not prevent development of human Mreg_UKR from monocytes in culture[J].Transplantation, 2017, 101(5):e188-e190. [44] Gerber J S, Mosser D M. Reversing lipopolysaccharide toxicity by ligating the macrophage Fc gamma receptors[J]. J Immunol, 2001, 166(11):6861-6868. [45] Manjili M H, Wang X Y, Abrams S. Evolution of our understanding of myeloid regulatory cells:from MDSCs to mregs[J].Front Immunol, 2014, 5:303-306. [46] Mosser D M. The many faces of macrophage activation[J].J Leukoc Biol, 2003, 73(2):209-212. [47] Lo S C, Reverberi D, Balbi C, et al. Mesenchymal stem cell-derived extracellular vesicles as mediators of anti-inflammatory effects:endorsement of macrophage polarization[J].Stem Cells Transl Med, 2017, 6(3):1018-1028. [48] Ylostalo J H, Bartosh T J, Coble K, et al. Human mesenchymal stem/stromal cells cultured as spheroids are self-activated to produce prostaglandin E2 that directs stimulated macrophages into an anti-inflammatory phenotype[J].Stem Cells, 2012, 30(10):2283-2296. [49] Fleming B D, Chandrasekaran P, Dillon L A, et al. The generation of macrophages with anti-inflammatory activity in the absence of STAT6 signaling[J].J Leukoc Biol, 2015, 98(3):395-407. [50] Xiao X, Gaffar I, Guo P, et al. M2 macrophages promote beta-cell proliferation by up-regulation of SMAD7[J]. Proc Natl Acad Sci U S A, 2014, 111(13):E1211-E1220. [51] Meshkibaf S, Martins A J, Henry G T, et al. Protective role of G-CSF in dextran sulfate sodium-induced acute colitis through generating gut-homing macrophages[J].Cytokine, 2016, 78:69-78. [52] Khalil M, Babes A, Lakra R, et al. Transient receptor potential melastatin 8 ion channel in macrophages modulates colitisthrough a balance-shift in TNF-alpha and interleukin-10 production[J].Mucosal Immunol, 2016, 9(6):1500-1513. [53] Agin M, Yucel A, Gumus M, et al. The effect of enteral nutrition support rich in tgf-beta in the treatment of inflammatory bowel disease in childhood[J]. Medicina (Kaunas),2019, 55(10):pii:E620. [54] Shi Y, Li T, Zhou J, et al. Herbs-partitioned moxibustion combined with acupuncture inhibits TGF-beta1-Smad-snail-induced intestinal epithelial mesenchymal transition in Crohn's disease model rats[J]. Evid Based Complement Alternat Med,2019, 2019:8320250. [55] Cosin-Roger J, Ortiz-Masia D, Calatayud S, et al. The activation of Wnt signaling by a STAT6-dependent macrophage phenotype promotes mucosal repair in murine IBD[J].Mucosal Immunol, 2016, 9(4):986-998. [56] Liu R, Tang A, Wang X, et al. Inhibition of lncRNA NEAT1 suppresses the inflammatory response in IBD by modulating the intestinal epithelial barrier and by exosome-mediated polarization of macrophages[J].Int J Mol Med, 2018, 42(5):2903-2913. [57] Lin Y, Yang X, Yue W, et al. Chemerin aggravates DSS-induced colitis by suppressing M2 macrophage polarization[J].Cell Mol Immunol, 2014, 11(4):355-366. [58] Mortha A, Chudnovskiy A, Hashimoto D, et al. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis[J].Science, 2014, 343(6178):1249288. [59] Dubertret L, Breton-Gorius J, Fosse M, et al. A cytochemical marker for epidermal differentiation, Langerhans cells, skin resident macrophages and mitochondria[J].Br J Dermatol, 1982, 107 Suppl 23:96-100. [60] Yeo E J, Cassetta L, Qian B Z, et al. Myeloid WNT7b mediates the angiogenic switch and metastasis in breast cancer[J].Cancer Res, 2014, 74(11):2962-2973. [61] Davis M J, Tsang T M, Qiu Y, et al. Macrophage M1/M2 polarization dynamically adapts to changes in cytokine microenvironments in Cryptococcus neoformans infection[J].MBio, 2013, 4(3):e213-e264. [62] Hu W, Li X, Zhang C, et al. Tumor-associated macrophages in cancers[J].Clin Transl Oncol, 2016, 18(3):251-258. [63] Dupasquier S, Blache P, Picque L L, et al. Modulating PKCalpha activity to target wnt/beta-catenin signaling in colon cancer[J].Cancers (Basel), 2019, 11(5):693-712. [64] Liu Y, Cao X. The origin and function of tumor-associated macrophages[J].Cell Mol Immunol, 2015, 12(1):1-4. [65] Che F, Heng X, Zhang H, et al. Novel B7-H4-mediated crosstalk between human non-Hodgkin lymphoma cells and tumor-associated macrophages leads to immune evasion via secretion of IL-6 and IL-10[J].Cancer Immunol Immunother, 2017, 66(6):717-729. [66] Goswami K K, Sarkar M, Ghosh S, et al. Neem leaf glycoprotein regulates function of tumor associated M2 macrophages in hypoxic tumor core:Critical role of IL-10/STAT3 signaling[J].Mol Immunol, 2016, 80:1-10. [67] Salmaninejad A, Valilou S F, Soltani A, et al. Tumor-associated macrophages:role in cancer development and therapeutic implications[J].Cell Oncol (Dordr), 2019,42(5):591-608. [68] Kratochvill F, Neale G, Haverkamp J M, et al. TNF counterbalances the emergence of M2 tumor macrophages[J].Cell Rep, 2015, 12(11):1902-1914. [69] Chen Y, Zhang S, Wang Q, et al. Tumor-recruited M2 macrophages promote gastric and breast cancer metastasis via M2 macrophage-secreted CHI3L1 protein[J].J Hematol Oncol, 2017, 10(1):36-49. [70] Balkwill F R, Mantovani A. Cancer-related inflammation:common themes and therapeutic opportunities[J]. Semin Cancer Biol, 2012, 22(1):33-40. |
[1] | Wang Qian, Zhang Jiakun, Liu Qing, Sun Lin, Li Jingjie. M2 macrophage promotes myocardial regeneration by modulating nerve regeneration and angiogenesis in neonatal mice [J]. Journal of Capital Medical University, 2022, 43(2): 178-186. |
[2] | Zhang Xinghua, Xing jie, Sun Can, Zhang Xi, Wang Yongjun. Pilot study on the mechanism of B cell chemotaxis of macrophage in ulcerative colitis [J]. Journal of Capital Medical University, 2022, 43(1): 42-46. |
[3] | Wu Yongle, Shang Hongwei, Sun Guangyong, Zhang Dong, Ding Huiguo. Optimization of immune cell isolation method from mouse adipose tissue and the role of subgroups in obese mice [J]. Journal of Capital Medical University, 2021, 42(4): 559-567. |
[4] | Zhang Wenli, Kong Fanhong, He Lu, Dong Chengya, Wang Yajie. Evaluation of biological characteristics of two u87 glioma cell lines after STR typing technique [J]. Journal of Capital Medical University, 2018, 39(1): 74-78. |
[5] | Zhang Yuanyuan, Li Weiyang, Yang Lin, Li Liying. Regulation of inflammatory cytokine expression of sphingosine 1-phosphate in murine monocyte/macrophage J774A.1 [J]. Journal of Capital Medical University, 2015, 36(5): 729-733. |
[6] | Yang Lin, Tian Lei, Xie Jieshi, Li Liying. Establishment of a simple method for separation, culture and identification of mouse peripheral blood monocyte/macrophage [J]. Journal of Capital Medical University, 2015, 36(4): 610-613. |
[7] | LI Yulin, WU Yina, ZHANG Congcong, KAN Xiaoyu, A Xi, ZHAO Wei, WANG Lvya, DU Jie. Adoptive transfer of murine bone-marrow derived macrophages tracing in vivo and application in hypertensive cardiac injury [J]. Journal of Capital Medical University, 2013, 34(3): 391-397. |
[8] | CAI Yong-ming;ZHANG Chun-yun;SHEN Wen-jin;LI Ming;JIANG Ling;ZHANG Zong-peng;. Immunogenicity of recombinant human granulocyte-macrophage colony-stimulating factor suppository in rats and beagle dogs [J]. Journal of Capital Medical University, 2012, 33(3): 345-349. |
[9] | MU Jun;ZHUANG Xiao-ming;LIU Rui-min;ZENG Jing-bo. Serum levels of MIF and TNF-α in type 2 diabetic patients with and without diabetic nephropathy [J]. Journal of Capital Medical University, 2012, 33(3): 385-388. |
[10] | GAO Jun;WANG Yu;ZHANG Zhong-tao;LI Jian-she;MA Xue-mei;ZHAO Li-zhen. Expression of Inducible Nitric Oxide Synthase and Heme Oxygenase-1 in Pulmonary Intravascular Macrophages of Rats with Hepatopulmonary Syndrome [J]. Journal of Capital Medical University, 2009, 30(2): 222-226. |
[11] | Tong Zhaohui;Chen Baomin;Wang Chen;Guzman Josune;Costabel Ulrich. Production of IL-12, IL-18 and TNF-α by Alveolar Macrophages in Extrinsic Allergic Alveolitis [J]. Journal of Capital Medical University, 2006, 27(1): 32-34. |
[12] | Xu Tingting;Hinda J. Ahmed;Kristina Eriksson;Karin Ahlman;Yang Yonghong;Teresa Lagergard. Interaction of Haemophilus Ducreyi with Human Monocyte-Derived Dendritic Cells and Macrophages in Vitro [J]. Journal of Capital Medical University, 2004, 25(2): 193-197. |
[13] | Shen Haizhong;Zhang Liping;Ping Guoling;Zhang Hongchun;Jing Xuefang;Li Yuying;Li Yulan;Li Weihong;Zhang Haiyan. Streptococcal Histone-Like Protein Induces Murine Peritoneal MΦ to Produce IL-6 [J]. Journal of Capital Medical University, 2003, 24(1): 11-13. |
[14] | Li Yuying;Shen Haizhong;Zhang Liping;Zhao Wenming. Effects of Extract from the Leaves of Ginkgo Biloba on Murine Antibody Forming and Macrophage Phagocytic Function [J]. Journal of Capital Medical University, 1995, 16(2): 106-108. |
[15] | Zhang Chengbo;Chen Rui;Zhao Huifang. The Antibacterial Effect of Chitosan [J]. Journal of Capital Medical University, 1993, 14(3): 175-177. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||