Journal of Capital Medical University ›› 2025, Vol. 46 ›› Issue (2): 269-282.doi: 10.3969/j.issn.1006-7795.2025.02.013
Previous Articles Next Articles
Xiong Tianyu1,2, Zhao Youquan1,2, Xie Ping3*, Niu Yinong1,2 *
Received:2025-01-14
Online:2025-04-21
Published:2025-04-14
Supported by:CLC Number:
Xiong Tianyu, Zhao Youquan, Xie Ping, Niu Yinong. Advances in research on the interaction mechanisms between androgen receptor and PI3K/AKT pathways in prostate cancer[J]. Journal of Capital Medical University, 2025, 46(2): 269-282.
| [1]Zheng R S, Chen R, Han B F, et al. Cancer incidence and mortality in China, 2022[J]. J Natl Cancer Cent, 2024, 46(3): 221-231. [2]Westaby D, Fenor de La Maza M D L D, Paschalis A, et al. A new old target: androgen receptor signaling and advanced prostate cancer[J]. Annu Rev Pharmacol Toxicol, 2022, 62: 131-153. [3]Choudhury A D. PTEN-PI3K pathway alterations in advanced prostate cancer and clinical implications[J]. Prostate, 2022, 82: S60-S72. [4]Tilki D, van den Bergh R C N, Briers E, et al. EAU-EANM-ESTRO-ESUR-ISUP-SIOG guidelines on prostate cancer. Part Ⅱ-2024 update: treatment of relapsing and metastatic prostate cancer[J]. Eur Urol, 2024, 86(2): 164-182. [5] Abida W, Campbell D, Patnaik A, et al. Rucaparib for the treatment of metastatic castration-resistant prostate cancer associated with a DNA damage repair gene alteration: final results from the phase 2 TRITON2 study[J]. Eur Urol, 2023, 84(3): 321-330. [6]Crabb S J, Griffiths G, Marwood E, et al. Pan-AKT inhibitor capivasertib with docetaxel and prednisolone in metastatic castration-resistant prostate cancer: a randomized, placebo-controlled phase II trial (ProCAID)[J]. J Clin Oncol, 2021, 39(3): 190-201. [7]George D J, Halabi S S, Healy P, et al. Phase 2 clinical trial of TORC1 inhibition with everolimus in men with metastatic castration-resistant prostate cancer[J]. Urol Oncol, 2020, 38(3): 79.e15-79.e22. [8]Raith F, O'Donovan D H, Lemos C, et al. Addressing the reciprocal crosstalk between the AR and the PI3K/AKT/mTOR signaling pathways for prostate cancer treatment[J]. Int J Mol Sci, 2023, 24(3): 2289. [9]Carver B S, Chapinski C, Wongvipat J, et al. Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer[J]. Cancer Cell, 2011, 19(5): 575-586. [10]Thomas C, Lamoureux F, Crafter C, et al. Synergistic targeting of PI3K/AKT pathway and androgen receptor axis significantly delays castration-resistant prostate cancer progression in vivo[J]. Mol Cancer Ther, 2013, 12(11): 2342-2355. [11]Rathkopf D E, Larson S M, Anand A, et al. Everolimus combined with gefitinib in patients with metastatic castration-resistant prostate cancer: phase 1/2 results and signaling pathway implications[J]. Cancer, 2015, 121(21): 3853-3861. [12]Graham L, Banda K, Torres A, et al. A phase II study of the dual mTOR inhibitor MLN0128 in patients with metastatic castration resistant prostate cancer[J]. Invest New Drugs, 2018, 36(3): 458-467. [13]Davey R A, Grossmann M. Androgen receptor structure, function and biology: from bench to bedside[J]. Clin Biochem Rev, 2016, 37(1): 3-15. [14]Lubahn D B, Brown T R, Simental J A, et al. Sequence of the intron/exon junctions of the coding region of the human androgen receptor gene and identification of a point mutation in a family with complete androgen insensitivity[J]. Proc Natl Acad Sci U S A, 1989, 86(23): 9534-9538. [15]Callewaert L, Van Tilborgh N, Claessens F. Interplay between two hormone-independent activation domains in the androgen receptor[J]. Cancer Res, 2006, 66(1): 543-553. [16]Dehm S M, Regan K M, Schmidt L J, et al. Selective role of an NH2-terminal WxxLF motif for aberrant androgen receptor activation in androgen depletion Independent prostate cancer cells[J]. Cancer Res, 2007, 67(20): 10067-10077. [17]Shaffer P L, Jivan A, Dollins D E, et al. Structural basis of androgen receptor binding to selective androgen response elements[J]. Proc Natl Acad Sci U S A, 2004, 101(14): 4758-4763. [18]Matias P M, Donner P, Coelho R, et al. Structural evidence for ligand specificity in the binding domain of the human androgen receptor. Implications for pathogenic gene mutations[J]. J Biol Chem, 2000, 275(34): 26164-26171. [19]Sack J S, Kish K F, Wang C, et al. Crystallographic structures of the ligand-binding domains of the androgen receptor and its T877A mutant complexed with the natural agonist dihydrotestosterone[J]. Proc Natl Acad Sci U S A, 2001, 98(9): 4904-4909. [20]Smith D F, Toft D O. Minireview: the intersection of steroid receptors with molecular chaperones: observations and questions[J]. Mol Endocrinol, 2008, 22(10): 2229-2240. [21]Zhou Z X, Sar M, Simental J A, et al. A ligand-dependent bipartite nuclear targeting signal in the human androgen receptor. Requirement for the DNA-binding domain and modulation by NH2-terminal and carboxyl-terminal sequences[J]. J Biol Chem, 1994, 269(18): 13115-13123. [22]Cutress M L, Whitaker H C, Mills I G, et al. Structural basis for the nuclear import of the human androgen receptor[J]. J Cell Sci, 2008, 121(Pt 7): 957-968. [23]Santi D N E, Spaggiari G, Gilioli L, et al. Molecular basis of androgen action on human sexual desire[J]. Mol Cell Endocrinol, 2018, 467: 31-41. [24]Shafi A A, Yen A E, Weigel N L. Androgen receptors in hormone-dependent and castration-resistant prostate cancer[J]. Pharmacol Ther, 2013, 140(3): 223-238. [25]Parker C, Sartor O. Abiraterone and increased survival in metastatic prostate cancer[J]. N Engl J Med, 2011, 365(8): 767. [26]Pandey S K, Sabharwal U, Tripathi S, et al. Androgen signaling in prostate cancer: when a friend turns foe[J]. Endocr Metab Immune Disord Drug Targets, 2025, 25(1): 37-56. [27]Huggins C. Effect of orchiectomy and irradiation on cancer of the prostate[J]. Ann Surg, 1942, 115(6): 1192-1200. [28]Desai K, McManus J M, Sharifi N. Hormonal therapy for prostate cancer[J]. Endocr Rev, 2021, 42(3): 354-373. [29]Malek R, Wu S T, Serrano D, et al. ELIGANT: a phase 4, interventional, safety study of leuprorelin acetate (ELIGARD ) in Asian men with prostate cancer[J]. Transl Androl Urol, 2022, 11(2): 179-189. [30]Matveev V, Gao X, Kopyltsov E, et al. PRIORITI: phase 4 study of triptorelin or active surveillance in high-risk prostate cancer[J]. Asia Pac J Clin Oncol, 2024, 20(6): 738-746. [31]Devosv G, Tosco L, Baldewijns M, et al. ARNEO: a randomized phase II trial of neoadjuvant degarelix with or without apalutamide prior to radical prostatectomy for high-risk prostate cancer[J]. Eur Urol, 2023, 83(6): 508-518. [32]Lorente D, Llacer C, Lozano R, et al. Prognostic score and benefit from abiraterone in first-line metastatic, castration-resistant prostate cancer[J]. Eur Urol, 2021, 80(5): 641-649. [33]Yokomizo A, Shiota M, Morokuma F, et al. GnRH antagonist monotherapy versus a GnRH agonist plus bicalutamide for advanced hormone-sensitive prostate cancer; KYUCOG-1401[J]. Int J Urol, 2024, 31(4): 362-369. [34]Colomba E, Jonas S F, Eymard J C, et al. A randomized, open-label, cross-over phase 2 trial of darolutamide and enzalutamide in men with asymptomatic or mildly symptomatic metastatic castrate-resistant prostate cancer: patient preference and cognitive function in ODENZA[J]. Eur Urol, 2024, 85(3): 274-282. [35]Chowdhury S, Bjartell A, Agarwal N, et al. Deep, rapid, and durable prostate-specific antigen decline with apalutamide plus androgen deprivation therapy is associated with longer survival and improved clinical outcomes in TITAN patients with metastatic castration-sensitive prostate cancer[J]. Ann Oncol, 2023, 34(5): 477-485. [36]Attard G, Parker C, Eeles R A, et al. Prostate cancer[J]. Lancet, 2016, 387(10013): 70-82. [37]Tietz K T, Dehm S M. Androgen receptor variants: RNA-based mechanisms and therapeutic targets[J]. Hum Mol Genet, 2020, 29(R1): R19-R26. [38]Abida W, Cyrta J, Heller G, et al. Genomic correlates of clinical outcome in advanced prostate cancer[J]. Proc Natl Acad Sci U S A, 2019, 116(23): 11428-11436. [39]Chen W S, Aggarwal R, Zhang L, et al. Genomic drivers of poor prognosis and enzalutamide resistance in metastatic castration-resistant prostate cancer[J]. Eur Urol, 2019, 76(5): 562-571. [40]Ledet E M, Lilly M B, Sonpavde G, et al. Comprehensive analysis of AR alterations in circulating tumor DNA from patients with advanced prostate cancer[J]. Oncologist, 2020, 25(4): 327-333. [41]Conteduca V, Wetterskog D, Sharabiani M T A, et al. Androgen receptor gene status in plasma DNA associates with worse outcome on enzalutamide or abiraterone for castration-resistant prostate cancer: a multi-institution correlative biomarker study[J]. Ann Oncol, 2017, 28(7): 1508-1516. [42]Zhai W, Sun Y, Guo C, et al. LncRNA-SARCC suppresses renal cell carcinoma (RCC) progression via altering the androgen receptor(AR)/miRNA-143-3p signals[J]. Cell Death Differ,2017,24(9):1502-1517. [43]Wang W X, Kong A A, Feng K L, et al. Exosomal miR-222-3p contributes to castration-resistant prostate cancer by activating mTOR signaling[J]. Cancer Sci, 2023, 114(11): 4252-4269. [44]Zhang S Q, Meng X L, Zhang S, et al. Design, synthesis, and biological evaluation of androgen receptor (AR) antagonist-heat shock protein 90 (Hsp90) inhibitor conjugates for targeted therapy of castration-resistant prostate cancer[J]. J Med Chem, 2023, 66(7): 4784-4801. [45]Wang L G, Johnson E M, Kinoshita Y, et al. Androgen receptor overexpression in prostate cancer linked to Pur alpha loss from a novel repressor complex[J]. Cancer Res, 2008, 68(8): 2678-2688. [46]Veldscholte J, Berrevoets C A, Ris-Stalpers C, et al. The androgen receptor in LNCaP cells contains a mutation in the ligand binding domain which affects steroid binding characteristics and response to antiandrogens[J]. J Steroid Biochem Mol Biol, 1992, 41(3/8): 665-669. [47]Prekovic S,van Royen M E,Voet A R,et al. The effect of F877L and T878A mutations on androgen receptor response to enzalutamide[J]. Mol Cancer Ther,2016,15(7):1702-1712. [48]Bohl C E, Miller D D, Chen J Y, et al. Structural basis for accommodation of nonsteroidal ligands in the androgen receptor[J]. J Biol Chem, 2005, 280(45): 37747-37754. [49]Lallous N, Volik S V, Awrey S, et al. Functional analysis of androgen receptor mutations that confer anti-androgen resistance identified in circulating cell-free DNA from prostate cancer patients[J]. Genome Biol, 2016, 17: 10. [50]Han D, Labaf M, Zhao Y W, et al. Androgen receptor splice variants drive castration-resistant prostate cancer metastasis by activating distinct transcriptional programs[J]. J Clin Invest, 2024, 134(11): e168649. [51]Dehm S M, Schmidt L J, Heemers H V, et al. Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance[J]. Cancer Res, 2008, 68(13): 5469-5477. [52]Hu R, Dunn T A, Wei S Z, et al. Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer[J]. Cancer Res, 2009, 69(1): 16-22. [53]Sharp A, Coleman I, Yuan W, et al. Androgen receptor splice variant-7 expression emerges with castration resistance in prostate cancer[J]. J Clin Invest, 2019, 129(1): 192-208. [54]Antonarakis E S, Lu C X, Wang H, et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer[J]. N Engl J Med, 2014, 371(11): 1028-1038. [55]Armstrong A J, Halabi S S, Luo J, et al. Prospective multicenter validation of androgen receptor splice variant 7 and hormone therapy resistance in high-risk castration-resistant prostate cancer: the PROPHECY study[J]. J Clin Oncol, 2019, 37(13): 1120-1129. [56]Vanhaesebroeck B, Stephens L, Hawkins P. PI3K signalling: the path to discovery and understanding[J]. Nat Rev Mol Cell Biol, 2012, 13(3): 195-203. [57]Engelman J A. Targeting PI3K signalling in cancer: opportunities, challenges and limitations[J]. Nat Rev Cancer, 2009, 9(8): 550-562. [58]Vanhaesebroeck B, Leevers S J, Panayotou G, et al. Phosphoinositide 3-kinases: a conserved family of signal transducers[J]. Trends Biochem Sci, 1997, 22(7): 267-272. [59]Vanhaesebroeck B, Welham M J, Kotani K, et al. P110delta, a novel phosphoinositide 3-kinase in leukocytes[J]. Proc Natl Acad Sci U S A, 1997, 94(9): 4330-4335. [60]Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, et al. The emerging mechanisms of isoform-specific PI3K signalling[J]. Nat Rev Mol Cell Biol, 2010, 11(5): 329-341. [61]He Y, Sun M M, Zhang G G, et al. Targeting PI3K/Akt signal transduction for cancer therapy[J]. Signal Transduct Target Ther, 2021, 6(1): 425. [62]Spangle J M, Roberts T M. Epigenetic regulation of RTK signaling[J]. J Mol Med (Berl), 2017, 95(8): 791-798. [63]Sangwan V, Park M. Receptor tyrosine kinases: role in cancer progression[J]. Curr Oncol, 2006, 13(5): 191-193. [64]Tamada M, Shi J, Bourdot K S, et al. Toll receptors remodel epithelia by directing planar-polarized Src and PI3K activity[J]. Dev Cell,2021,56(11):1589-1602.e9. [65]Aiba Y, Kameyama M G I, Yamazaki T, et al. Regulation of B-cell development by BCAP and CD19 through their binding to phosphoinositide 3-kinase[J]. Blood, 2008, 111(3): 1497-1503. [66]Wang R, Qu Z, Lv Y, et al. Important roles of PI3K/AKT signaling pathway and relevant inhibitors in prostate cancer progression[J]. Cancer Med, 2024, 13(21): e70354. [67]Staal S P. Molecular cloning of the akt oncogene and its human homologues AKT1 and AKT2: amplification of AKT1 in a primary human gastric adenocarcinoma[J]. Proc Natl Acad Sci U S A, 1987, 84(14): 5034-5037. [68]Degan S E, Gelman I H. Emerging roles for AKT isoform preference in cancer progression pathways[J]. Mol Cancer Res, 2021, 19(8): 1251-1257. [69]Alessi D R, Andjelkovic M, Caudwell B, et al. Mechanism of activation of protein kinase B by insulin and IGF-1[J]. EMBO J, 1996, 15(23): 6541-6551. [70]Alessi D R, James S R, Downes C P, et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha[J]. Curr Biol, 1997, 7(4): 261-269. [71]Chen Y, Jiao D, He H, et al. Disruption of the Keap1-mTORC2 axis by cancer-derived Keap1/mLST8 mutations leads to oncogenic mTORC2-AKT activation[J]. Redox Biol, 2023, 67: 102872. [72]Manning B D, Cantley L C. AKT/PKB signaling: navigating downstream[J]. Cell, 2007, 129(7): 1261-1274. [73]Rathmell J C, Fox C J, Plas D R, et al. Akt-directed glucose metabolism can prevent Bax conformation change and promote growth factor-independent survival[J]. Mol Cell Biol, 2003, 23(20): 7315-7328. [74]Berwick D C, Hers I, Heesom K J, et al. The identification of ATP-citrate lyase as a protein kinase B (Akt) substrate in primary adipocytes[J]. J Biol Chem, 2002, 277(37): 33895-33900. [75]Düvel K, Yecies J L, Menon S, et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1[J]. Mol Cell, 2010, 39(2): 171-183. [76]Li J Y, Ren K K, Zhang W J, et al. Human amniotic mesenchymal stem cells and their paracrine factors promote wound healing by inhibiting heat stress-induced skin cell apoptosis and enhancing their proliferation through activating PI3K/AKT signaling pathway[J]. Stem Cell Res Ther, 2019, 10(1): 247. [77]Chibaya L, Karim B, Zhang H, et al. Mdm2 phosphorylation by Akt regulates the p53 response to oxidative stress to promote cell proliferation and tumorigenesis[J]. Proc Natl Acad Sci U S A, 2021, 118(4): e2003193118. [78]Yang C, Jin X, Liu X C, et al. TRIM15 forms a regulatory loop with the AKT/FOXO1 axis and LASP1 to modulate the sensitivity of HCC cells to TKIs[J]. Cell Death Dis, 2023, 14(1): 47. [79]Zhao Z B, Gao J, Li C L, et al. Reactive oxygen species induce endothelial differentiation of liver cancer stem-like sphere cells through the activation of Akt/IKK signaling pathway[J]. Oxid Med Cell Longev, 2020, 2020: 1621687. [80]Song F, Wang C G, Wang T L, et al. Enhancement of gemcitabine sensitivity in intrahepatic cholangiocarcinoma through saikosaponin—a mediated modulation of the p-AKT/BCL-6/ABCA1 axis[J]. Phytomedicine, 2024, 133: 155944. [81]Liu Y, Zhang T, Deng J, et al. The cytotoxicity of γδT cells in non-small cell lung cancer mediated via coordination of the BCL-2 and AKT pathways[J]. Oncogene,2023,42(49):3648-3654. [82]Rouzi K, Altay A, Bouatia M, et al. Novel isoniazid-hydrazone derivatives induce cell growth inhibition, cell cycle arrest and apoptosis via mitochondria-dependent caspase activation and PI3K/AKT inhibition[J]. Bioorg Chem, 2024, 150: 107563. [83]Gonçalves J, Pinto S, Carmo F, et al. Additive cytotoxic and colony-formation inhibitory effects of aspirin and metformin on PI3KCA-mutant colorectal cancer cells[J]. Int J Mol Sci, 2024, 25(10): 5381. [84]Gerstung M, Jolly C, Leshchiner I, et al. The evolutionary history of 2,658 cancers[J]. Nature, 2020, 578(7793): 122-128. [85]Tsolakos N, Durrant T N, Chessa T, et al. Quantitation of class IA PI3Ks in mice reveals p110-free-p85s and isoform-selective subunit associations and recruitment to receptors[J]. Proc Natl Acad Sci U S A, 2018, 115(48): 12176-12181. [86]Mekhamer A M, Saied M H, Elneily D A E, et al. Targeted sequencing of HER2-Positive breast cancer mutations revealed a potential association between PIK3CA and trastuzumab resistance[J]. Asian Pac J Cancer Prev, 2024, 25(11): 4051-4059. [87]Dey N, Leyland-Jones B, De P. MYC-xing it up with PIK3CA mutation and resistance to PI3K inhibitors: summit of two giants in breast cancers[J]. Am J Cancer Res, 2015, 5(1): 1-19. [88]Liu X H, Mei W X, Zhang P F, et al. PIK3CA mutation as an acquired resistance driver to EGFR-TKIs in non-small cell lung cancer: clinical challenges and opportunities[J]. Pharmacol Res, 2024, 202: 107123. [89]Zhang H, Zhang L, He Y, et al. PI3K PROTAC overcomes the lapatinib resistance in PIK3CA-mutant HER2 positive breast cancer[J]. Cancer Lett, 2024, 598: 217112. [90]Candido S, Salemi R, Piccinin S, et al. The PIK3CA H1047R mutation confers resistance to BRAF and MEK inhibitors in a375 melanoma cells through the cross-activation of MAPK and PI3K-Akt pathways[J]. Pharmaceutics, 2022, 14(3): 590. [91]Li J, Yen C, Liaw D, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer[J]. Science, 1997, 275(5308): 1943-1947. [92]Lee Y R, Chen M, Pandolfi P P. The functions and regulation of the PTEN tumour suppressor: new modes and prospects[J]. Nat Rev Mol Cell Biol, 2018, 19(9): 547-562. [93]Turnham D J, Bullock N, Dass M S, et al. The PTEN conundrum: how to target PTEN-Deficient prostate cancer[J]. Cells, 2020, 9(11): 2342. [94]Wang X J, Trotman L C, Koppie T, et al. NEDD4-1 is a proto-oncogenic ubiquitin ligase for PTEN[J]. Cell, 2007, 128(1): 129-139. [95]Xie P, Peng Z Q, Chen Y J, et al. Neddylation of PTEN regulates its nuclear import and promotes tumor development[J]. Cell Res, 2021, 31(3): 291-311. [96]Lee Y R, Chen M, Lee J D, et al. Reactivation of PTEN tumor suppressor for cancer treatment through inhibition of a MYC-WWP1 inhibitory pathway[J]. Science, 2019, 364(6441): eaau0159. [97]Lin Y X, Wang Y, Ding J X, et al. Reactivation of the tumor suppressor PTEN by mRNA nanoparticles enhances antitumor immunity in preclinical models[J]. Sci Transl Med, 2021, 13(599): eaba9772. [98]Kim Y, Choi J, Kim E H, et al. Design of PD-L1-Targeted lipid nanoparticles to turn on PTEN for efficient cancer therapy[J]. Adv Sci, 2024, 11(22): e2309917. [99]Tserga A, Chatziandreou I, Michalopoulos N V, et al. Mutation of genes of the PI3K/AKT pathway in breast cancer supports their potential importance as biomarker for breast cancer aggressiveness[J]. Virchows Arch, 2016, 469(1): 35-43. [100]Shimoi T, Hashimoto J, Sudo K, et al. Hotspot mutation profiles of AKT1 in Asian women with breast and endometrial cancers[J]. BMC Cancer, 2021, 21(1): 1131. [101]Askham J M, Platt F, Chambers P A, et al. AKT1 mutations in bladder cancer: identification of a novel oncogenic mutation that can co-operate with E17K[J]. Oncogene, 2010, 29(1): 150-155. [102]El Ahanidi H, El Azzouzi M, Arrouchi H, et al. AKT1 and PIK3CA activating mutations in Moroccan bladder cancer patients' biopsies and matched urine[J]. Pan Afr Med J, 2022, 41: 59. [103]Hechtman J F, Sadowska J, Huse J T, et al. AKT1 E17K in colorectal carcinoma is associated with BRAF V600E but not MSI-H status: a clinicopathologic comparison to PIK3CA helical and kinase domain mutants[J]. Mol Cancer Res, 2015, 13(6):1003-1008. [104]Carpten J D, Faber A L, Horn C, et al. A transforming mutation in the pleckstrin homology domain of AKT1 in cancer[J]. Nature, 2007, 448(7152): 439-444. [105]Landgraf K E, Pilling C, Falke J J. Molecular mechanism of an oncogenic mutation that alters membrane targeting: Glu17Lys modifies the PIP lipid specificity of the AKT1 PH domain[J]. Biochemistry, 2008, 47(47): 12260-12269. [106]Hyman D M, Smyth L M, Donoghue M T A, et al. AKT inhibition in solid tumors with AKT1 mutations[J]. J Clin Oncol, 2017, 35(20): 2251-2259. [107]Kalinsky K, Hong F X, McCourt C K, et al. Effect of capivasertib in patients with an AKT1 E17K-mutated tumor: NCI-MATCH subprotocol EAY131-Y nonrandomized trial[J]. JAMA Oncol, 2021, 7(2): 271-278. [108]Jamroze A, Chatta G, Tang D G. Androgen receptor (AR) heterogeneity in prostate cancer and therapy resistance[J]. Cancer Lett, 2021, 518: 1-9. [109]Hashemi M, Taheriazam A, Daneii P, et al. Targeting PI3K/Akt signaling in prostate cancer therapy[J]. J Cell Commun Signal, 2023, 17(3): 423-443. [110]Converse A, Thomas P. Androgens promote vascular endothelial cell proliferation through activation of a ZIP9-dependent inhibitory G protein/PI3K-Akt/Erk/cyclin D1 pathway[J]. Mol Cell Endocrinol, 2021, 538: 111461. [111]Darshit B S, Ramanathan M. Activation of AKT1/GSK-3β/β-Catenin-TRIM11/survivin pathway by novel GSK-3β inhibitor promotes neuron cell survival: study in differentiated SH-SY5Y cells in OGD model[J]. Mol Neurobiol, 2016, 53(10): 6716-6729. [112]Nyquist M D, Corella A, Burns J, et al. Exploiting AR-regulated drug transport to induce sensitivity to the survivin inhibitor YM155[J]. Mol Cancer Res, 2017, 15(5): 521-531. [113]Liu X, Sun C F, Zou K X, et al. Novel PGK1 determines SKP2-dependent AR stability and reprograms granular cell glucose metabolism facilitating ovulation dysfunction[J]. EBioMedicine, 2020, 61: 103058. [114]Fontana F, Giannitti G, Marchesi S, et al. The PI3K/Akt pathway and glucose metabolism: a dangerous liaison in cancer[J]. Int J Biol Sci, 2024, 20(8): 3113-3125. [115]Zhao S H, Cheng L, Shi Y, et al. MIEF2 reprograms lipid metabolism to drive progression of ovarian cancer through ROS/AKT/mTOR signaling pathway[J]. Cell Death Dis, 2021, 12(1): 18. [116]Berchuck J E, Adib E, Abou Alaiwi S, et al. The prostate cancer androgen receptor cistrome in African American men associates with upregulation of lipid metabolism and immune response[J]. Cancer Res, 2022, 82(16): 2848-2859. [117]Audet-Walsh É, Dufour C R, Yee T, et al. Nuclear mTOR acts as a transcriptional integrator of the androgen signaling pathway in prostate cancer[J]. Genes Dev, 2017, 31(12): 1228-1242. [118]Ren Q N, Zhang H, Sun C Y, et al. Phosphorylation of androgen receptor by mTORC1 promotes liver steatosis and tumorigenesis[J]. Hepatology, 2022, 75(5): 1123-1138. [119]Castoria G, Lombardi M, Barone M V, et al. Androgen-stimulated DNA synthesis and cytoskeletal changes in fibroblasts by a nontranscriptional receptor action[J]. J Cell Biol, 2003, 161(3): 547-556. [120]Mukhopadhyay C, Yang C, Xu L, et al. G3BP1 inhibits Cul3SPOP to amplify AR signaling and promote prostate cancer[J]. Nat Commun, 2021, 12(1): 6662. [121]An J, Wang C J, Deng Y B, et al. Destruction of full-length androgen receptor by wild-type SPOP, but not prostate-cancer-associated mutants[J]. Cell Rep, 2014, 6(4): 657-669. [122]Barbieri C E, Baca S C, Lawrence M S, et al. Exome sequencing identifies recurrent SPOP, FOXA1 and Med12 mutations in prostate cancer[J]. Nat Genet, 2012, 44(6): 685-689. [123]Blattner M, Lee D J, O'Reilly C, et al. SPOP mutations in prostate cancer across demographically diverse patient cohorts[J]. Neoplasia, 2014, 16(1): 14-20. [124]Blattner M, Liu D, Robinson B D, et al. SPOP mutation drives prostate tumorigenesis in vivo through coordinate regulation of PI3K/mTOR and AR signaling[J]. Cancer Cell, 2017, 31(3): 436-451. [125]Jiang Q, Zheng N, Bu L, et al. SPOP-mediated ubiquitination and degradation of PDK1 suppresses AKT kinase activity and oncogenic functions[J]. Mol Cancer, 2021, 20(1): 100. [126]Mulholland D J, Tran L M, Li Y F, et al. Cell autonomous role of PTEN in regulating castration-resistant prostate cancer growth[J]. Cancer Cell, 2011, 19(6): 792-804. [127]Lee S H, Johnson D, Luong R, et al. Crosstalking between androgen and PI3K/AKT signaling pathways in prostate cancer cells[J]. J Biol Chem, 2015, 290(5): 2759-2768. [128]Sheflin L, Keegan B, Zhang W, et al. Inhibiting proteasomes in human HepG2 and LNCaP cells increases endogenous androgen receptor levels[J]. Biochem Biophys Res Commun, 2000, 276(1): 144-150. [129]Lin H K, Yeh S, Kang H Y, et al. Akt suppresses androgen-induced apoptosis by phosphorylating and inhibiting androgen receptor[J]. Proc Natl Acad Sci U S A, 2001, 98(13): 7200-7205. [130]Lin H K, Wang L, Hu Y C, et al. Phosphorylation-dependent ubiquitylation and degradation of androgen receptor by Akt require Mdm2 E3 ligase[J]. EMBO J, 2002, 21(15): 4037-4048. [131]Kong L, Yuan Q, Zhu H R, et al. The suppression of prostate LNCaP cancer cells growth by selenium nanoparticles through Akt/Mdm2/AR controlled apoptosis[J]. Biomaterials, 2011, 32(27): 6515-6522. [132]Kwon D H, Eom G H, Ko J H, et al. MDM2 E3 ligase-mediated ubiquitination and degradation of HDAC1 in vascular calcification[J]. Nat Commun, 2016, 7: 10492. [133]Zhao Y, Tindall D J, Huang H J. Modulation of androgen receptor by FOXA1 and FOXO1 factors in prostate cancer[J]. Int J Biol Sci, 2014, 10(6): 614-619. [134]Brunet A, Bonni A, Zigmond M J, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor[J]. Cell, 1999, 96(6): 857-868. [135]Liu P, Li S W, Gan L, et al. A transcription-independent function of FOXO1 in inhibition of androgen-independent activation of the androgen receptor in prostate cancer cells[J]. Cancer Res, 2008, 68(24): 10290-10299. [136]Bian S, Ni W, Zhou L, et al. Ubiquitin-specific protease 1 facilitates hepatocellular carcinoma progression by modulating mitochondrial fission and metabolic reprogramming via cyclin-dependent kinase 5 stabilization[J]. Cell Death Differ, 2024, 31(9): 1202-1218. [137]Hsu F N, Chen M C, Chiang M C, et al. Regulation of androgen receptor and prostate cancer growth by cyclin-dependent kinase 5[J]. J Biol Chem, 2011, 286(38): 33141-33149. [138]Lindqvist J, Imanishi S Y, Torvaldson E, et al. Cyclin-dependent kinase 5 acts as a critical determinant of AKT-dependent proliferation and regulates differential gene expression by the androgen receptor in prostate cancer cells[J]. Mol Biol Cell, 2015, 26(11): 1971-1984. [139]Kao W H, Chiu K Y, Tsai S C S, et al. PI3K/Akt inhibition promotes AR activity and prostate cancer cell proliferation through p35-CDK5 modulation[J]. Biochim Biophys Acta Mol Basis Dis, 2025, 1871(2): 167568. [140]Newton A C, Trotman L C. Turning off AKT: PHLPP as a drug target[J]. Annu Rev Pharmacol Toxicol, 2014, 54: 537-558. [141]Pei H D, Li L, Fridley B L, et al. FKBP51 affects cancer cell response to chemotherapy by negatively regulating Akt[J]. Cancer Cell, 2009, 16(3): 259-266. [142]Xiong X Y, Zhang S Y, Zhu W Z, et al. Androgen-ablative therapies inducing CXCL8 regulates mTORC1/SREBP2-dependent cholesterol biosynthesis to support progression of androgen receptor negative prostate cancer cells[J]. Oncogene, 2024, 43(47): 3456-3468. [143]Taylor B S, Schultz N, Hieronymus H, et al. Integrative genomic profiling of human prostate cancer[J]. Cancer Cell, 2010, 18(1): 11-22. [144]Armstrong A J, Halabi S S, Healy P, et al. Phase II trial of the PI3 kinase inhibitor buparlisib (BKM-120) with or without enzalutamide in men with metastatic castration resistant prostate cancer[J]. Eur J Cancer, 2017, 81: 228-236. [145]Rescigno P, Porta N, Finneran L, et al. Capivasertib in combination with enzalutamide for metastatic castration resistant prostate cancer after docetaxel and abiraterone: results from the randomized phase II RE-AKT trial[J]. Eur J Cancer, 2024, 205: 114103. [146]Chow H, Ghosh P M, deVere White R, et al. A phase 2 clinical trial of everolimus plus bicalutamide for castration-resistant prostate cancer[J]. Cancer, 2016, 122(12): 1897-1904. [147]Tortorella E, Giantulli S, Sciarra A, et al. AR and PI3K/AKT in prostate cancer: a tale of two interconnected pathways[J]. Int J Mol Sci, 2023, 24(3): 2046. [148]Sweeney C J, Percent I J, Babu S, et al. Phase Ib/II study of enzalutamide with samotolisib (LY3023414) or placebo in patients with metastatic castration-resistant prostate cancer[J]. Clin Cancer Res, 2022, 28(11): 2237-2247. [149]Sweeney C, Bracarda S, Sternberg C N, et al. Ipatasertib plus abiraterone and prednisolone in metastatic castration-resistant prostate cancer (IPATential150): a multicentre, randomised, double-blind, phase 3 trial[J]. Lancet, 2021, 398(10295): 131-142. [150]Massard C, Chi K N, Castellano D, et al. Phase Ib dose-finding study of abiraterone acetate plus buparlisib (BKM120) or dactolisib (BEZ235) in patients with castration-resistant prostate cancer.[J] Eur J Cancer,2017,76:36-44. [151]Sarker D, Dawson N A, Aparicio A M, et al. A phase I, open-label, dose-finding study of GSK2636771, a PI3Kβ inhibitor, administered with enzalutamide in patients with metastatic castration-resistant prostate cancer[J]. Clin Cancer Res,2021,27:5248-5257. [152]de Bono J S, De Giorgi U, Rodrigues D N, et al. Randomized phase II study evaluating Akt blockade with ipatasertib, in combination with abiraterone, in patients with metastatic prostate cancer with and without PTEN loss[J]. Clin Cancer Res,2019,25:928-936. [153]Shore N, Mellado B, Shah S, et al. A phase I study of capivasertib in combination with abiraterone acetate in patients with metastatic castration-resistant prostate cancer[J]. Clin Genitourin Cancer,2023,21:278-285. [154]Kolinsky M P, Rescigno P, Bianchini D, et al. A phase I dose-escalation study of enzalutamide in combination with the AKT inhibitor AZD5363 (capivasertib) in patients with metastatic castration-resistant prostate cancer[J]. Ann Oncol,2020,31:619-625. [155]Nakabayashi M, Werner L, Courtney K D, et al. Phase II trial of RAD001 and bicalutamide for castration-resistant prostate cancer[J]. BJU Int,2012,110:1729-1735. [156]Zhao J L, Antonarakis E S, Cheng H H, et al. Phase 1b study of enzalutamide plus CC-115, a dual mTORC1/2 and DNA-PK inhibitor, in men with metastatic castration-resistant prostate cancer (mCRPC)[J]. Br J Cancer,2024,130:53-62. |
| [1] | Fan Yunpeng, Xiong Tianyu, Yang Kun, Liu Zhanliang, Jin Song, Xie Ping, Niu Yinong. Prediction model for extraprostatic extension of prostate based on MRI and clinical indicators [J]. Journal of Capital Medical University, 2025, 46(2): 243-251. |
| [2] | Peng Yichen, Zheng Yi, Li Shenglan, Yu Jianyu, Lan Yanjie, Liu Xinrui, Chen Feng, Li Wenbin. Study of genes associated with aberrant methylation regulation in high-grade meningiomas [J]. Journal of Capital Medical University, 2023, 44(5): 747-752. |
| [3] | Zhu Guangyi, Wang Runjin, Xiong Tianyu, Ye Xiaobo, Liu Zhanliang, Cao Fang, Lin Zhemin, Niu Yinong. Analysis of risk factors for second primary malignancies after radical prostatectomy for non-metastatic prostate cancer [J]. Journal of Capital Medical University, 2023, 44(3): 433-438. |
| [4] | Xiong Tianyu, Niu Yinong. Mechanism of periprostatic adipose tissue affecting the development of prostate cancer [J]. Journal of Capital Medical University, 2023, 44(3): 457-462. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||