[1]Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3):229-263.
[2]Smyth E C, Nilsson M, Grabsch H I, et al. Gastric cancer[J]. Lancet, 2020, 396(10251): 635-648.
[3]Sitarz R, Skierucha M, Mielko J, et al. Gastric cancer: epidemiology, prevention, classification, and treatment[J]. Cancer Manag Res, 2018, 10: 239-248.
[4]Liao W H, Wang J, Li Y C. Natural products based on Correa's cascade for the treatment of gastric cancer trilogy: current status and future perspective[J]. J Pharm Anal, 2025, 15(2): 101075.
[5]Peng R, Liu S, You W H, et al. Gastric microbiome alterations are associated with decreased CD8+tissue-resident memory T cells in the tumor microenvironment of gastric cancer[J]. Cancer Immunol Res, 2022, 10(10): 1224-1240.
[6]Wu M J, Tian C J, Zou Z W, et al. Gastrointestinal microbiota in gastric cancer: potential mechanisms and clinical applications-a literature review[J]. Cancers, 2024, 16(20): 3547.
[7]Moss S F, Shah S C, Tan M C, et al. Evolving concepts in Helicobacter pylori management[J]. Gastroenterology, 2024, 166(2): 267-283.
[8]Pan K F, Li W Q, Zhang L, et al. Gastric cancer prevention by community eradication of Helicobacter pylori: a cluster-randomized controlled trial[J]. Nat Med, 2024, 30(11): 3250-3260.
[9]Salvatori S, Marafini I, Laudisi F, et al. Helicobacter pylori and gastric cancer: pathogenetic mechanisms[J]. Int J Mol Sci, 2023, 24(3): 2895.
[10]Majewski M, Mertowska P, Mertowski S, et al. Microbiota and the immune system-actors in the gastric cancer story[J]. Cancers, 2022, 14(15): 3832.
[11]Ferreira R M, Pereira-Marques J, Pinto-Ribeiro I, et al. Gastric microbial community profiling reveals a dysbiotic cancer-associated microbiota[J]. Gut, 2018, 67(2): 226-236.
[12]Coker O O, Dai Z W, Nie Y Z, et al. Mucosal microbiome dysbiosis in gastric carcinogenesis[J]. Gut, 2018, 67(6): 1024-1032.
[13]Chen X H, Wang A, Chu A N, et al. Mucosa-associated microbiota in gastric cancer tissues compared with non-cancer tissues[J]. Front Microbiol, 2019, 10: 1261.
[14]Gantuya B, El-Serag H B, Matsumoto T, et al. Gastric microbiota in helicobacter pylori-negative and -positive gastritis among high incidence of gastric cancer area[J]. Cancers, 2019, 11(4): 504.
[15]Tran S C, Bryant K N, Cover T L. The Helicobacter pylori cag pathogenicity island as a determinant of gastric cancer risk[J]. Gut Microbes, 2024, 16(1): 2314201.
[16]Chen B N, Liu X L, Yu P Y, et al. H.pylori-induced NF-κB-PIEZO1-YAP1-CTGF axis drives gastric cancer progression and cancer-associated fibroblast-mediated tumour microenvironment remodelling[J]. Clin Transl Med, 2023, 13(11): e1481.
[17]Schmidinger B, Petri K, Lettl C, et al. Helicobacter pylori binds human annexins via lipopolysaccharide to interfere with toll-like receptor 4 signaling[J]. PLoS Pathog, 2022, 18(2): e1010326.
[18]Suzuki M, Mimuro H, Kiga K, et al. Helicobacter pylori CagA phosphorylation-independent function in epithelial proliferation and inflammation[J]. Cell Host Microbe, 2009, 5(1): 23-34.
[19]Che Y, Geng B, Xu Y, et al. Helicobacter pylori-induced exosomal Met educates tumour-associated macrophages to promote gastric cancer progression[J]. J Cell Mol Med, 2018, 22(11): 5708-5719.
[20]Baj J, Forma A, Sitarz M, et al. Helicobacter pylori virulence factors-mechanisms of bacterial pathogenicity in the gastric microenvironment[J]. Cells, 2020, 10(1): 27.
[21]Chmiela M, Kupcinskas J. Review: pathogenesis of Helicobacter pylori infection[J]. Helicobacter, 2019, 24(S1): e12638.
[22]Ito N, Tsujimoto H, Ueno H, et al. Helicobacter pylori-mediated immunity and signaling transduction in gastric cancer[J]. J Clin Med, 2020, 9(11): 3699.
[23]Li N, Xu H B, Ou Y R, et al. LPS-induced CXCR7 expression promotes gastric cancer proliferation and migration via the TLR4/MD-2 pathway[J]. Diagn Pathol, 2019, 14(1): 3.
[24]Luo Y H, Yan J, Mao Y F. Helicobacter pylori lipopolysaccharide: biological activities in vitro and in vivo, pathological correlation to human chronic gastritis and peptic ulcer[J]. World J Gastroenterol, 2004, 10(14): 2055-2059.
[25]Han L, Shu X, Wang J. Helicobacter pylori-mediated oxidative stress and gastric diseases: a review[J]. Front Microbiol, 2022, 13: 811258.
[26]Hetz C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond[J]. Nat Rev Mol Cell Biol, 2012, 13(2): 89-102.
[27]Baird M, Woon Ang P, Clark I, et al. The unfolded protein response is activated in Helicobacter-induced gastric carcinogenesis in a non-cell autonomous manner[J]. Lab Invest, 2013, 93(1): 112-122.
[28]Azad M B, Chen Y Q, Gibson S B. Regulation of autophagy by reactive oxygen species(ROS): implications for cancer progression and treatment[J]. Antioxid Redox Signal, 2009, 11(4): 777-790.
[29]Sakaguchi A A, Miura S, Takeuchi T, et al. Increased expression of inducible nitric oxide synthase and peroxynitrite in Helicobacter pylori gastric ulcer[J]. Free Radic Biol Med, 1999, 27(7/8): 781-789.
[30]Cherdantseva L A, Potapova O V, Sharkova T V, et al. Association of Helicobacter pylori and iNOS production by macrophages and lymphocytes in the gastric mucosa in chronic gastritis[J]. J Immunol Res, 2014, 2014: 762514.
[31]Wang F, Meng W B, Wang B Y, et al. Helicobacter pylori-induced gastric inflammation and gastric cancer. [J]. Cancer Lett, 2014, 345(2): 196-202.
[32]Yamashita S, Nanjo S, Rehnberg E, et al. Distinct DNA methylation targets by aging and chronic inflammation: a pilot study using gastric mucosa infected with Helicobacter pylori[J]. Clin Epigenetics, 2019, 11(1): 191.
[33]Liu B, Bukhari I, Li F Z, et al. Enhanced LRP8 expression induced by Helicobacter pylori drives gastric cancer progression by facilitating β-catenin nuclear translocation[J]. J Adv Res, 2025, 69: 299-312.
[34]Houghton J, Stoicov C, Nomura S, et al. Gastric cancer originating from bone marrow-derived cells[J]. Science, 2004, 306(5701): 1568-1571.
[35]Varon C, Dubus P, Mazurier F, et al. Helicobacter pylori infection recruits bone marrow-derived cells that participate in gastric preneoplasia in mice[J]. Gastroenterology, 2012, 142(2): 281-291.
[36]Shao L L, Chen Z, Soutto M, et al. Helicobacter pylori-induced miR-135b-5p promotes cisplatin resistance in gastric cancer[J]. FASEB J, 2019, 33(1): 264-274.
[37]Ajani J A, Lee J, Sano T, et al. Gastric adenocarcinoma. [J]. Nat Rev Dis Primers, 2017, 3: 17036.
[38]Yang T T, Cao N, Zhang H H, et al. Helicobacter pylori infection-induced H3Ser10 phosphorylation in stepwise gastric carcinogenesis and its clinical implications[J]. Helicobacter, 2018, 23(3): e12486.
[39]Zhang D, Tang Z Y, Huang H, et al. Metabolic regulation of gene expression by histone lactylation[J]. Nature, 2019, 574(7779): 575-580.
[40]Dawson M A, Kouzarides T. Cancer epigenetics: from mechanism to therapy[J]. Cell, 2012, 150(1): 12-27.
[41]Castaño-Rodríguez N, Goh K L, Fock K M, et al. Dysbiosis of the microbiome in gastric carcinogenesis[J]. Sci Rep, 2017, 7(1): 15957.
[42]Dicksved J, Lindberg M, Rosenquist M, et al. Molecular characterization of the stomach microbiota in patients with gastric cancer and in controls. [J]. J Med Microbiol, 2009, 58(Pt 4): 509-516.
[43]Chan A W, Gill R S, Schiller D, et al. Potential role of metabolomics in diagnosis and surveillance of gastric cancer[J]. World J Gastroenterol, 2014, 20(36): 12874-12882.
[44]Yuan L, Pan L B, Wang Y Z, et al. Characterization of the landscape of the intratumoral microbiota reveals that Streptococcus anginosus increases the risk of gastric cancer initiation and progression[J]. Cell Discov, 2024, 10(1): 117.
[45]Zeng R, Sung J J Y, Yu J. New pathogen for gastric cancer: Streptococcus anginosus[J]. Clin Transl Med, 2024, 14(12): e70104.
[46]Wang Z S, Mou R S, Jin S Y, et al. Streptococcus anginosus promotes gastric cancer progression via GSDME-mediated pyroptosis pathway: molecular mechanisms of action of GSDME, cleaved caspase-3, and NLRP3 proteins[J]. Int J Biol Macromol, 2025, 307(Pt 4): 142341.
[47]Barra W F, Sarquis D P, Khayat A S, et al. Gastric cancer microbiome[J]. Pathobiology, 2021, 88(2): 156-169.
[48]Wen F P, Han Y, Zhang H, et al. Epstein-Barr virus infection upregulates extracellular OLFM4 to activate YAP signaling during gastric cancer progression[J]. Nat Commun, 2024, 15(1): 10543.
[49]Zhou Y Q, Jiang J X, He S, et al. Epstein-Barr virus hijacks histone demethylase machinery to drive epithelial malignancy progression through KDM5B upregulation[J]. Signal Transduct Target Ther, 2025, 10(1): 83.
[50]Liu J, Wang H Y, Zhang S, et al. Identification of shared and disease-specific intratumoral microbiome-host gene associations in gastrointestinal tumors[J]. Physiol Genomics, 2024, 56(11): 699-710.
[51]Wang G J, Wang H J, Ji X, et al. Intratumoral microbiome is associated with gastric cancer prognosis and therapy efficacy[J]. Gut Microbes, 2024, 16(1): 2369336.
[52]Abate M, Vos E, Gonen M, et al. A novel microbiome signature in gastric cancer: a two independent cohort retrospective analysis[J]. Ann Surg, 2022, 276(4): 605-615.
[53]Gao W, Li F F, Wu T, et al. Prognostic stratification of gastric cancer patients by intratumoral microbiota-mediated tumor immune microenvironment[J]. Microb Pathog, 2025, 200: 107296.
[54]Yue K L, Sheng D S, Xue X X, et al. Bidirectional mediation effects between intratumoral microbiome and host DNA methylation changes contribute to stomach adenocarcinoma[J]. Microbiol Spectr, 2023, 11(4): e0090423.
[55]Shin W S, Xie F D, Chen B N, et al. Exploring the microbiome in gastric cancer: assessing potential implications and contextualizing microorganisms beyond H. pylori and Epstein-Barr virus[J]. Cancers, 2023, 15(20): 4993.
[56]Toyoshima O, Nishizawa T, Koike K. Endoscopic Kyoto classification of Helicobacter pylori infection and gastric cancer risk diagnosis[J]. World J Gastroenterol, 2020, 26(5): 466-477.
[57]Peng X, Yao S Q, Huang J, et al. Alterations in bacterial community dynamics from noncancerous to gastric cancer[J]. Front Microbiol, 2023, 14: 1138928.
|