[1]Yekani M, Dastgir M, Fattahi S, et al. Microbiological and molecular aspects of periodontitis pathogenesis: an infection-induced inflammatory condition[J]. Front Cell Infect Microbiol, 2025, 15: 1533658.
[2]Wielento A, Lagosz-Cwik K B, Potempa J, et al. The role of gingival fibroblasts in the pathogenesis of periodontitis[J]. J Dent Res, 2023, 102(5): 489-496.
[3]吕雪雯, 潘春玲. 牙周组织工程的研究进展[J]. 中国医科大学学报, 2019, 48 (12): 1132-1136.
[4]Seo B M, Miura M, Gronthos S, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament[J]. Lancet, 2004, 364(9429): 149-155.
[5]Lei F Z, Li M J, Lin T T, et al. Treatment of inflammatory bone loss in periodontitis by stem cell-derived exosomes[J]. Acta Biomater, 2022, 141: 333-343.
[6]林梅, 张冬雪, 刘志强, 等. 慢性牙周炎患者血清IL-33、TNF-α、IL-6的检测及意义[J]. 首都医科大学学报, 2016, 37(3): 255-259.
[7]Choi E H, Park S J. TXNIP: a key protein in the cellular stress response pathway and a potential therapeutic target[J]. Exp Mol Med, 2023, 55(7): 1348-1356.
[8]Qualls-Histed S J, Nielsen C P, MacGurn J A. Lysosomal trafficking of the glucose transporter GLUT1 requires sequential regulation by TXNIP and ubiquitin[J]. iScience, 2023, 26(3): 106150.
[9]王欣, 束传亮. miR-17-5p调控TXNIP/NLRP3信号通路对牙龈卟啉单胞菌LPS诱导的人牙龈成纤维细胞炎症反应的影响[J]. 中国病原生物学杂志, 2025, 20(4): 460-465.
[10]潘春玲, 吕雪雯,王宏岩,等. 牙龈卟啉单胞菌内化牙周膜干细胞抑制成骨分化的能力[J]. 中国医科大学学报, 2019, 48 (8): 678-682.
[11]董家辰, 束蓉. 炎症微环境对人牙周膜成纤维细胞增殖与成骨分化的影响[J]. 上海口腔医学, 2022, 31(3): 243-247.
[12]Tang S, Feng W Y, Li Z K, et al. Extracellular vesicles derived from lipopolysaccharide-pretreated periodontal ligament stem cells ameliorate inflammatory responses in experimental colitis via the PI3K/AKT signaling pathway[J]. Int J Nanomedicine, 2024, 19: 11997-12013.
[13]Yang P, Shi F H, Zhang Y L. Baricitinib alleviates lipopolysaccharide-induced human periodontal ligament stem cell injury and promotes osteogenic differentiation by inhibiting JAK/STAT signaling[J]. Exp Ther Med, 2023, 25(2): 74.
[14]Rodas-Junco B A, Hernández-Solís S E, Serralta-Interian A A, et al. Dental stem cells and lipopolysaccharides: a concise review[J]. Int J Mol Sci, 2024, 25(8): 4338.
[15]Fei J W, Wang H X, Han J, et al. TXNIP activates NLRP3/IL-1β and participate in inflammatory response and oxidative stress to promote deep venous thrombosis[J]. Exp Biol Med, 2023, 248(18): 1588-1597.
[16]Woo S H, Kyung D, Lee S H, et al. TXNIP suppresses the osteochondrogenic switch of vascular smooth muscle cells in atherosclerosis[J]. Circ Res, 2023, 132(1): 52-71.
[17]Mo Y L, Lai W X, Zhong Y, et al. TXNIP contributes to bone loss via promoting the mitochondrial oxidative phosphorylation during glucocorticoid-induced osteoporosis[J]. Life Sci, 2021, 266: 118938.
[18]Fang S H, Jin Y H, Zheng H X, et al. High glucose condition upregulated Txnip expression level in rat mesangial cells through ROS/MEK/MAPK pathway[J]. Mol Cell Biochem, 2011, 347(1/2): 175-182.
[19]Luo T Y, Zhou X Y, Qin M Y, et al. Corilagin restrains NLRP3 inflammasome activation and pyroptosis through the ROS/TXNIP/NLRP3 pathway to prevent inflammation[J]. Oxid Med Cell Longev, 2022, 2022: 1652244.
[20]Jiang N, Liu J J, Guan C H, et al. Thioredoxin-interacting protein: a new therapeutic target in bone metabolism disorders?[J]. Front Immunol, 2022, 13: 955128.
[21]Naseem S, Xuan M F, Hua H, et al. Vitamin C and N-acetylcysteine promotes bovine AD-MSCs proliferation and differentiation via Akt/mTOR/P70S6K signaling pathway for cultured meat production[J]. Anim Biosci, 2025, 38(10): 2250-2265.
[22]Fang Y X, Chen L, Yuan Y, et al. Human menstrual blood-derived stem cells secreted ECM1 directly interacts with LRP1α to ameliorate hepatic fibrosis through FoxO1 and mTOR signaling pathway[J]. Stem Cell Res Ther, 2025, 16(1): 230.
[23]Huang Y S, Gao J W, Ao R F, et al. Accumulation of advanced oxidation protein products aggravates bone-fat imbalance during skeletal aging[J]. J Orthop Translat, 2025, 51: 24-36.
[24]Simcox J, Lamming D W. The central moTOR of metabolism[J]. Dev Cell, 2022, 57(6): 691-706.
[25]Lin C X, Liu L L, Zeng C, et al. Activation of mTORC1 in subchondral bone preosteoblasts promotes osteoarthritis by stimulating bone sclerosis and secretion of CXCL12[J]. Bone Res, 2019, 7: 5.
[26]Liu W, Zhao Y C, Wang G F, et al. TRIM22 inhibits osteosarcoma progression through destabilizing NRF2 and thus activation of ROS/AMPK/mTOR/autophagy signaling[J]. Redox Biol, 2022, 53: 102344.
[27]Lee S Y, Chiu S W, Li I H, et al. 3,4-methylenedioxymethamphetamine induces reactive oxygen species-mediated autophagy and thioredoxin-interactive protein/nucleotide-binding domain, leucine-rich containing family, pyrin domain-containing-3 inflammasome activation in dental pulp stem cells[J]. J Dent Sci, 2025, 20(3): 1782-1791.
[28]Steinberg G R, Hardie D G. New insights into activation and function of the AMPK[J]. Nat Rev Mol Cell Biol, 2023, 24(4): 255-272.
[29]Ling N X Y, Kaczmarek A, Hoque A, et al. mTORC1 directly inhibits AMPK to promote cell proliferation under nutrient stress[J]. Nat Metab, 2020, 2(1): 41-49.
[30]González A, Hall M N, Lin S C, et al. AMPK and TOR: the Yin and Yang of cellular nutrient sensing and growth control[J]. Cell Metab, 2020, 31(3): 472-492.
[31]李炎杰, 刘旺, 和红兵. AMPK通路介导骨代谢相关细胞自噬调控牙周炎骨稳态的研究进展[J]. 口腔疾病防治, 2023, 31(7): 524-528.
|