[1]Anon. Nobel Prize in Physiology or Medicine 2025[EB/OL]//(2025-10-06)[2025-10-08]. https://www.nobelprize.org/prizes/medicine/2025/summary/.
[2]Bluestone J A, Anderson M. Tolerance in the age of immunotherapy[J]. N Engl J Med, 2020, 383(12): 1156-1166.
[3]Nishizuka Y, Sakakura T. Thymus and reproduction: sex-linked dysgenesia of the gonad after neonatal thymectomy in mice[J]. Science, 1969, 166(3906): 753-755.
[4]Sakaguchi S, Fukuma K, Kuribayashi K, et al. Organ-specific autoimmune diseases induced in mice by elimination of T cell subset. I. Evidence for the active participation of T cells in natural self-tolerance; deficit of a T cell subset as a possible cause of autoimmune disease[J]. J Exp Med, 1985, 161(1): 72-87.
[5]Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases[J]. J Immunol, 1995, 155(3): 1151-1164.
[6]Sakaguchi S. Regulatory T cells: key controllers of immunologic self-tolerance[J]. Cell, 2000, 101(5): 455-458.
[7]Clark L B, Appleby M W, Brunkow M E, et al. Cellular and molecular characterization of the scurfy mouse mutant[J]. J Immunol, 1999, 162(5): 2546-2554.
[8]Brunkow M E, Jeffery E W, Hjerrild K A, et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse[J]. Nat Genet, 2001, 27(1): 68-73.
[9]Wildin R S, Ramsdell F, Peake J, et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy[J]. Nat Genet, 2001, 27(1): 18-20.
[10]Schubert L A, Jeffery E, Zhang Y, et al. Scurfin (FOXP3) acts as a repressor of transcription and regulates T cell activation[J]. J Biol Chem, 2001, 276(40): 37672-37679.
[11]Bennett C L, Christie J, Ramsdell F, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3[J]. Nat Genet, 2001, 27(1): 20-21.
[12]Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3[J]. Science, 2003, 299(5609): 1057-1061.
[13]Tay C, Tanaka A, Sakaguchi S. Tumor-infiltrating regulatory T cells as targets of cancer immunotherapy[J]. Cancer Cell, 2023, 41(3): 450-465.
[14]Liu X N, Zhang W Q, Han Y C, et al. FOXP3+regulatory T cell perturbation mediated by the IFNγ-STAT1-IFITM3 feedback loop is essential for anti-tumor immunity[J]. Nat Commun, 2024, 15(1): 122.
[15]Niu C Y, Wei H, Pan X X, et al. Foxp3 confers long-term efficacy of chimeric antigen receptor-T cells via metabolic reprogramming[J]. Cell Metab, 2025, 37(6): 1426-1441, e7.
[16]Ding R, Yu X Y, Hu Z L, et al. Lactate modulates RNA splicing to promote CTLA-4 expression in tumor-infiltrating regulatory T cells[J]. Immunity, 2024, 57(3): 528-540, e6.
[17]Ghobadinezhad F, Ebrahimi N, Mozaffari F, et al. The emerging role of regulatory cell-based therapy in autoimmune disease[J]. Front Immunol, 2022, 13: 1075813.
[18]Zhang R Z, Zhao Y Y, Chen X M, et al. Low-dose IL-2 therapy in autoimmune diseases: an update review[J]. Int Rev Immunol, 2024, 43(3): 113-137.
[19]He J, Zhang X, Wei Y B, et al. Low-dose interleukin-2 treatment selectively modulates CD4(+) T cell subsets in patients with systemic lupus erythematosus[J]. Nat Med, 2016, 22(9): 991-993.
|