[1]Li Y, Shan Y Y, Pang H. Design and synthesis of nitrogen-doped hexagonal NiCoO nanoplates derived from Ni-Co-MOF for high-performance electrochemical energy storage[J]. Chinese Chemical Letters, 2020, 31(9): 2280-2286.
[2]Ai D, Tang Y N, Yang R M, et al. Hexavalent chromium (Cr(VI)) removal by ball-milled iron-sulfur @biochar based on P-recovery: enhancement effect and synergy mechanism[J]. Bioresour Technol, 2023, 371: 128598.
[3]Wang Q Q, Wang L, Zhang S Y, et al. MOF-on-MOF-derived FeCo@NC OER&ORR bifunctional electrocatalysts for zinc-air batteries[J]. J Colloid Interface Sci, 2025, 677(Pt A): 800-811.
[4]Ma D W, Wang G, Lu J S, et al. Multifunctional nano MOF drug delivery platform in combination therapy[J]. Eur J Med Chem, 2023, 261: 115884.
[5]Nobel Prize in Chemistry 2025. The Nobel Prize in Chemistry 2025 was awarded jointly to Susumu Kitagawa, Richard Robson and Omar M. Yaghi “for the development of metal-organic frameworks”[EB/OL]. (2025-10-08)[2025-10-25]. https://www.nobelprize.org/prizes/chemistry/2025/summary/.
[6]Zhou H C J, Kitagawa S. Metal-organic frameworks (MOFs)[J]. Chem Soc Rev, 2014, 43(16): 5415-5418.
[7]Hoskins B F, Robson R. Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments[J]. J Am Chem Soc, 1989, 111(15): 5962-5964.
[8]Hoskins B F, Robson R. Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4′,4″,4′′′-tetracyanotetraphenylmethane]BF4.xC6H5NO2[J]. J Am Chem Soc, 1990, 112(4): 1546-1554.
[9]Li H L, Eddaoudi M, OKeeffe M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999, 402(6759): 276-279.
[10]Kitagawa S, Kondo M. Functional micropore chemistry of crystalline metal complex-assembled compounds[J]. Bull Chem Soc Jpn, 1998, 71(8), 1739-1753.
[11]Kyoto University Institute for Advanced Study. Susumu Kitagawa[EB/OL]. [2025-10-10]. https://kuias.kyoto-u.ac.jp/e/profile/kitagawa/.
[12]Nakamoto T, Hanaya M, Katada M, et al. The valence-detrapping phase transition in a crystal of the mixed-valence trinuclear iron cyanoacetate complex [Fe(3)O(O(2)CCH(2)CN)(6)(H(2)O)(3)][J]. Inorg Chem, 1997, 36(20): 4347-4359.
[13]Okubo T, Kitagawa S, Kondo M, et al. A new anion-trapping radical host, [(cu-dppe)3{hat-(CN)6}]2+[J]. Angew Chem Int Ed Engl, 1999, 38(7): 931-933.
[14]The Royal Society. Professor Richard Robson FRS[EB/OL]. [2025-10-10]. https://royalsociety.org/people/richard-robson-35839/.
[15]Berkeley U C. Prof. Omar M. Yaghi[EB/OL].[2025-10-10]. https://yaghi.berkeley.edu/.
[16]Yaghi O M, Li G M, Li H L. Selective binding and removal of guests in a microporous metal-organic framework[J]. Nature, 1995, 378(6558): 703-706.
[17]Rosi N L, Eckert J, Eddaoudi M, et al. Hydrogen storage in microporous metal-organic frameworks[J]. Science, 2003, 300(5622): 1127-1129.
[18]Yaghi O M, OKeeffe M, Ockwig N W, et al. Reticular synthesis and the design of new materials[J]. Nature, 2003, 423(6941): 705-714.
[19]Sun Y J, Zheng L W, Yang Y, et al. Metal-organic framework nanocarriers for drug delivery in biomedical applications[J]. Nanomicro Lett, 2020, 12(1): 103.
[20]Sun Y, Ding S L, Zhao X Y, et al. Self-reinforced MOF-based nanogel alleviates osteoarthritis by long-acting drug release[J]. Adv Mater, 2024, 36(39): e2401094.
[21]Yadav P, Bhardwaj P, Maruthi M, et al. Metal-organic framework based drug delivery systems as smart carriers for release of poorly soluble drugs hydrochlorothiazide and dapsone[J]. Dalton Trans, 2023, 52(33): 11725-11734.
[22]Yan X J, Zhao X Y, Fan M D, et al. Acidic Environment-responsive metal organic framework-mediated dihydroartemisinin delivery for triggering production of reactive oxygen species in drug-resistant lung cancer[J]. Int J Nanomedicine, 2024, 19: 3847-3859.
[23]Wijesundara Y H, Howlett T S, Kumari S, et al. The promise and potential of metal-organic frameworks and covalent organic frameworks in vaccine nanotechnology[J]. Chem Rev, 2024, 124(6): 3013-3036.
[24]Murty R, Walton K S, Prausnitz M R. Thermostability of tetanus toxoid vaccine encapsulated in metal-organic frameworksl[J].Drug Deliv Transl Res,2025,15(12):4585-4600.
[25]Li S, Yan J, Zhu Q Q, et al. Biological effects of EGCG@MOF Zn(BTC)4 system improves wound healing in diabetes[J]. Molecules, 2022, 27(17): 5427.
[26]Jiang X R, Mi J H, Wang Y L, et al. Application of metal-organic frameworks nanoparticles in the diagnosis and treatment of breast cancer[J]. Int J Nanomedicine, 2025, 20: 10127-10149.
[27]Wyszogrodzka G, Doroyński P, Gil B, et al. Iron-based metal-organic frameworks as a theranostic carrier for local tuberculosis therapy[J]. Pharm Res, 2018, 35(7): 144.
[28]Soman S, Kulkarni S, John J, et al. Transferrin-conjugated UiO-66 metal organic frameworks loaded with doxorubicin and indocyanine green: a multimodal nanoplatform for chemo-photothermal-photodynamic approach in cancer management[J]. Int J Pharm, 2024, 665: 124665.[29]Han X, Chen J, Zhao Y J, et al. Dual antibody-guided drug delivery systems using MOF-PQDs nanocomposites for precise tumor diagnosis and combination therapy[J]. Chem Eng J, 2025, 505: 159275.
[30]Greed S, Yaghi O M. The man of MOFs and more[J]. Nat Rev Chem, 2025, 9(3): 135-137.
|