[1] Lin Y, Li Z, Liu C, et al. Towards precision medicine in ischemic stroke and transient ischemic attack[J]. Front Biosci (Landmark Ed), 2018, 23:1338-1359. [2] Zhao Y, Fang Y, Li J, et al. Neuroprotective effects of chrysophanol against inflammation in middle cerebral artery occlusion mice[J]. Neurosci Lett, 2016, 630:16-22. [3] Zhao Y, Fang Y, Zhao H, et al. Chrysophanol inhibits endoplasmic reticulum stress in cerebral ischemia and reperfusion mice[J]. Eur J Pharmacol, 2018, 818:1-9. [4] 房亚兰, 黄语悠, 赵咏梅, 等. 大黄酚对局灶性脑缺血再灌注小鼠缺血半暗带区环氧化酶2和基质金属蛋白酶-9表达的影响[J]. 首都医科大学学报, 2017, 38(1):47-52. [5] Shichinohe H, Tan C, Abumiya T, et al. Neuroprotective effects of cilostazol are mediated by multiple mechanisms in a mouse model of permanent focal ischemia[J]. Brain Res, 2015, 1602:53-61. [6] 鲁杨, 张鸿, 马英. CREB与脑缺血神经元损伤[J]. 解剖科学进展, 2010, 16(4):374-376. [7] Miyamoto N, Tanaka R, Shimosawa T, et al. Protein kinase A-dependent suppression of reactive oxygen species in transient focal ischemia in adrenomedullin-deficient mice[J]. J Cereb Blood Flow Metab, 2009, 29(11):1769-1779. [8] Dancause N, Nudo R J. Shaping plasticity to enhance recovery after injury[J]. Prog Brain Res, 2011, 192:273-295. [9] Zou S, Zhang M, Feng L, et al. Protective effects of notoginsenoside R1 on cerebral ischemia-reperfusion injury in rats[J]. Exp Ther Med, 2017, 14(6):6012-6016. [10] Qin L, Jing D, Parauda S, et al. An adaptive role for BDNF Val66Met polymorphism in motor recovery in chronic stroke[J]. J Neurosci, 2014, 34(7):2493-2502. [11] Tang Q P, Shen Q, Wu L X, et al. STAT3 signal that mediates the neural plasticity is involved in willed-movement training in focal ischemic rats[J]. J Zhejiang Univ Sci B, 2016, 17(7):493-502. [12] Hu G Q, Du X, Li Y J, et al. Inhibition of cerebral ischemia/reperfusion injury-induced apoptosis:nicotiflorin and JAK2/STAT3 pathway[J]. Neural Regen Res, 2017, 12(1):96-102. [13] 陈媛, 吴海金, 黄晓松, 等. 葛根素对脑缺血再灌注大鼠海马组织P-STAT3、P53表达的影响[J]. 湖南中医药大学学报, 2018, 38(1):36-39. [14] Dong W, Qi Z, Liang J, et al. Reduction of zinc accumulation in mitochondria contributes to decreased cerebral ischemic injury by normobaric hyperoxia treatment in an experimental stroke model[J]. Exp Neurol, 2015, 272:181-189. [15] Lee J H, Park S Y, Lee W S, et al. Lack of antiapoptotic effects of antiplatelet drug, aspirin and clopidogrel, and antioxidant, MCI-186, against focal ischemic brain damage in rats[J]. Neurol Res, 2005, 27(5):483-492. [16] Chen A, Xiong L J, Tong Y, et al. The neuroprotective roles of BDNF in hypoxic ischemic brain injury[J]. Biomed Rep, 2013, 1(2):167-176. [17] Cortes-Mendoza J, Diaz de Leon-Guerrero S, Pedraza-Alva G, et al. Shaping synaptic plasticity:the role of activity-mediated epigenetic regulation on gene transcription[J]. Int J Dev Neurosci, 2013, 31(6):359-369. [18] Liu B, Li L L, Tan X D, et al. Gadd45b mediates axonal plasticity and subsequent functional recovery after experimental stroke in rats[J]. Mol Neurobiol, 2015, 52(3):1245-1256. [19] Mohamed R A, Agha A M, Abdel-Rahman A A, et al. Role of adenosine A2A receptor in cerebral ischemia reperfusion injury:signaling to phosphorylated extracellular signal-regulated protein kinase (pERK1/2)[J]. Neuroscience, 2016, 314:145-159. [20] Jiang Y, Wei N, Lu T, et al. Intranasal brain-derived neurotrophic factor protects brain from ischemic insult via modulating local inflammation in rats[J]. Neuroscience, 2011, 172:398-405. [21] Satriotomo I, Bowen K K, Vemuganti R. JAK2 and STAT3 activation contributes to neuronal damage following transient focal cerebral ischemia[J]. J Neurochem, 2006, 98(5):1353-1368. [22] Cheng X, Zhao H, Yan F, et al. Limb remote ischemic post-conditioning mitigates brain recovery in a mouse model of ischemic stroke by regulating reactive astrocytic plasticity[J]. Brain Res, 2018, 1686:94-100. |