[1] Wei A H, Li W. Hermansky-Pudlak syndrome:pigmentary and non-pigmentary defects and their pathogenesis[J]. Pigment Cell Melanoma Res, 2013, 26(2):176-192. [2] Zhang Q, Li W, Novak E K, et al. The gene for the muted (mu) mouse, a model for Hermansky-Pudlak syndrome, defines a novel protein which regulates vesicle trafficking[J]. Hum Mol Genet, 2002, 11(6):697-706. [3] Suzuki T, Li W, Zhang Q, et al. The gene mutated in cocoa mice, carrying a defect of organelle biogenesis, is a homologue of the human Hermansky-Pudlak syndrome-3 gene[J]. Genomics, 2001, 78(1/2):30-37. [4] Suzuki T, Li W, Zhang Q, et al. Hermansky-Pudlak syndrome is caused by mutations in HPS4, the human homolog of the mouse light-ear gene[J]. Nat Genet, 2002, 30(3):321-324. [5] Zhang Q, Zhao B, Li W, et al. Ru2 and Ru encode mouse orthologs of the genes mutated in human Hermansky-Pudlak syndrome types 5 and 6[J]. Nat Genet, 2003, 33(2):145-153. [6] Li W, Zhang Q, Oiso N, et al. Hermansky-Pudlak syndrome type 7(HPS-7) results from mutant dysbindin, a member of the biogenesis of lysosome-related organelles complex 1(BLOC-1)[J]. Nat Genet, 2003, 35(1):84-89. [7] Detter J C, Zhang Q, Mules E H, et al. Rab geranylgeranyl transferase α mutation in the gunmetal mouse reduces Rab prenylation and platelet synthesis[J]. Proc Natl Acad Sci U S A, 2000, 97(8):4144-4149. [8] Chintala S, Li W, Lamoreux M L, et al. Slc7a11 controls the production of pheomelanin pigment and the proliferation of cultured cells[J]. Proc Natl Acad Sci U S A, 2005, 102(31):10964-10969. [9] Chintala S, Tan J, Gautum R, et al. The Slc35d3 gene, encoding an orphan nucleotide sugar transporter, regulates platelet dense granules[J]. Blood, 2007, 109(4):1533-1540. [10] Wei A, Zang D, Zhang Z, et al. Exome sequencing identifies SLC24A5 as the candidate gene for non-syndromic oculocutaneous albinism[J]. J Invest Dermatol, 2013, 133(7):1834-1840. [11] Yang Q, He X, Yang L, et al. The BLOS1 interacting protein KXD1 is involved in the biogenesis of lysosome-related organelles[J]. Traffic, 2012, 13(8):1160-1169. [12] Wei A, He X, Li W. Hypopigmentation in Hermansky-Pudlak syndrome[J]. J Dermatol, 2013, 40(5):325-329. [13] Zhang Z, Gong J, Sviderskaya E V, et al. Mitochondrial NCKX5 regulates melanosomal biogenesis and pigment production[J]. J Cell Sci, 2019, 132(14):jcs232009. [14] Wei A, Wang Y, Long Y, et al. A comprehensive analysis reveals mutational spectra and common alleles in Chinese patients with oculocutaneous albinism[J]. J Invest Dermatol, 2010, 130(3):716-724. [15] Wei A, Yang X, Lian S, et al. Implementation of an optimized strategy for genetic testing of the Chinese patients with oculocutaneous albinism[J]. J Dermatol Sci, 2011, 62(2):124-127. [16] 李巍, 魏爱华, 白大勇, 等. 白化病的临床实践指南[J]. 中华医学遗传学杂志, 2020, 37(3):252-257. [17] 陈元颖, 郝振华, 李巍. 囊泡运输的分子细胞机制[J]. 中国细胞生物学杂志, 2019, 41(1):3-12. [18] Feng Y, Zhou Z, He X, et al. Dysbindin deficiency in sandy mice causes reduction of snapin and displays schizophrenia-like behaviors[J]. Schizoph Res, 2008, 106(2-3):218-228. [19] Chen X, Feng Y, Hao C, et al. DTNBP1, a schizophrenia-susceptible gene affects kinetics of transmitter release[J].J Cell Biol, 2008, 18(5):791-801. [20] Yuan Y, Wang H, Wei Z, et al. Autophagy is impaired in hilar mossy cells of the dentate gyrus and is implicated in schizophrenia[J]. J Genet Genomics, 2015, 42(1):1-8. [21] Wang H, Yuan Y, Zhang Z, et al. Dysbindin-1C is required for the survival of hilar mossy cells and the maturation of adult newborn neurons in dentate gyrus[J]. J Biol Chem, 2014, 289(42):29060-29072. [22] Wei Z, Yuan Y, Jaouen F, et al. SLC35D3 increases autophagic activity in midbrain dopaminergic neurons by enhancing BECN1-ATG14-PIK3C3 complex formation[J]. Autophagy, 2016, 12(7):1168-1179. [23] Zhang Z, Hao C, Li C, et al. Mutation of SLC35D3 causes metabolic syndrome by impairing dopamine signaling in striatal D1 neurons[J]. PLoS Genet, 2014, 10(2):e1004124. [24] Hao Z, Wei L, Feng Y, et al. Impaired maturation of large dense core vesicles in muted-deficient adrenal chromaffin cells[J]. J Cell Sci, 2015, 128(7):1365-1374. [25] Ma J, Zhang Z, Yang L, et al. BLOC-2 subunit HPS6 deficiency affects the tubulation and secretion of von Willebrand factor from mouse endothelial cells[J]. J Genet Genomics, 2016, 43(12):686-693. [26] Zhang A, He X, Zhang L, et al. Biogenesis of lysosome-related organelles complex-1 subunit 1(BLOS1) interacts with sorting nexin 2 and the endosomal sorting complex required for transport-I (ESCRT-I) component TSG101 to mediate the sorting of epidermal growth factor receptor into endosomal compartments[J]. J Biol Chem, 2014, 289(42):29180-29194. [27] Zhou W, He Q, Zhang C, et al. BLOS2 negatively regulates Notch signaling during neural and hematopoietic stem and progenitor cell development[J]. Elife, 2016, 5:e18108. [28] Zhen Y, Li W. Impairment of autophagosome-lysosome fusion in the buff mutant mice with the VPS33A (D251E) mutation[J]. Autophagy, 2015, 11(9):1608-1622. [29] Hu X, Guo R, Guo J, et al. Parallel tests of whole exome sequencing and copy number variant sequencing increase the diagnosis yields of rare pediatric disorders[J]. Front Genet, 2020, 11:473. [30] Wei A, Yuan Y, Qi Z, et al. Instability of BLOC-2 and BLOC-3 in Chinese patients with Hermansky-Pudlak syndrome[J]. Pigment Cell Melanoma Res, 2019, 32(3):373-380. [31] Wei A, Zang D, Zhang Z, et al. Prenatal genotyping of four common oculocutaneous albinism genes in 51 Chinese families[J]. J Genet Genomics, 2015, 42(6):279-286. |