[1] Chen Y Q, Shi H Z, Qin X J,et al. CD4+CD25+ regulatory T lymphocytes in malignant pleural effusion[J]. Am J Respir Crit Care Med, 2005,172(11):1434-1439. [2] Qin X J, Shi H Z, Huang Z X,et al. Interleukin-16 in tuberculous and malignant pleural effusions[J]. Eur Respir J,2005, 25(4):605-611. [3] Qin X J, Shi H Z, Deng J M, et al. CCL22 recruits CD4-positive CD25-positive regulatory T cells into malignant pleural effusion[J]. Clin Cancer Res,2009,15(7):2231-2237. [4] Ye Z J, Zhou Q, Gu Y Y, et al. Generation and differentiation of IL-17-producing CD4+ T cells in malignant pleural effusion[J]. J Immunol,2010,185(10):6348-6354. [5] Ye Z J, Zhou Q, Yin W, et al. Differentiation and immune regulation of IL-9-producing CD4+ T cells in malignant pleural effusion[J]. Am J Respir Crit Care Med,2012, 186(11):1168-1179. [6] Ye Z J, Zhou Q, Yin W,et al. Interleukin 22-producing CD4+ T cells in malignant pleural effusion[J]. Cancer Lett, 2012, 326(1):23-32. [7] Lin H, Tong Z H, Xu Q Q, et al. Interplay of Th1 and Th17 cells in murine models of malignant pleural effusion[J]. Am J Respir Crit Care Med,2014, 189(6):697-706. [8] Wu X Z, Shi X K,Zhai K, et al. Activated naïve B cells promote development of malignant pleural effusion by different regulation of TH1 and TH17 response[J]. Am J Physiol Lung Cell Mol Physiol, 2018, 315(3):L443-L455. [9] Wu X Z, Zhai K, Yi F S, et al. IL-10 promotes malignant pleural effusion in mice by regulating TH1-and TH17-cell differentiation and migration[J]. Eur J Immunol,2019, 49(4):653-665. [10] Zhai K, Shi X Y, Yi F S, et al. IL-10 promotes malignant pleural effusion by regulating TH1 response via an miR-7116-5p/GPR55/ERK pathway in mice[J]. Eur J Immunol,2020, 10.1002/eji.202048574. [11] Marazioti A B T, Stathopoulos G T. The lymphatic system in malignant pleural effusion. Drain or immune switch?[J]. Am J Respir Crit Care Med,2014,189(6):626-627. [12] Xia H, Ye Z J, Zhou Q, et al. IL-27 and IL-27-producing CD4+ T cells in human tuberculous pleural effusion[J]. Tuberculosis (Edinb), 2014, 94(6):579-588. [13] Kimura D, Miyakoda M, Kimura K, et al. Interleukin-27-producing CD4+ T cells regulate protective immunity during malaria parasite infection[J]. Immunity, 2016,44(3):672-682. [14] Ye Z J, Zhou Q, Yuan M L, et al. Differentiation and recruitment of IL-22-producing helper T cells stimulated by pleural mesothelial cells in tuberculous pleurisy[J]. Am J Respir Crit Care Med, 2012, 185(6):660-669. [15] Ye Z J, Yuan M L, Zhou Q, et al. Differentiation and recruitment of Th9 cells stimulated by pleural mesothelial cells in human Mycobacterium tuberculosis infection[J]. PLoS One, 2012,7(2):e31710. [16] Tong Z H, Shi H Z. Subpopulations of helper T lymphocytes in tuberculous pleurisy[J]. Tuberculosis (Edinb), 2013, 93(3):279-284. [17] Yang W B, Liang Q L, Ye Z J, et al. Cell origins and diagnostic accuracy of interleukin 27 in pleural effusions[J]. PLoS One,2012,7(7):e40450. [18] Wu Y B, Ye Z J, Qin S M, et al. Combined detections of interleukin 27, interferon-γ, and adenosine deaminase in pleural effusion for diagnosis of tuberculous pleurisy[J]. Chin Med J,2013, 126(17):3215-3221. [19] Skouras V S, Kalomenidis I. Pleural fluid tests to diagnose tuberculous pleuritis[J]. Curr Opin Pulm Med,2016, 22(4):367-377. [20] Wang W, Zhou Q, Zhai K, et al. Diagnostic accuracy of interleukin 27 for tuberculous pleural effusion:two prospective studies and one meta-analysis[J]. Thorax, 2018, 73(3):240-247. [21] Jiang J, Shi H Z, Liang Q L, et al. Diagnostic value of interferon-gamma in tuberculous pleurisy:a metaanalysis[J]. Chest, 2007, 131(4):1133-1141. [22] Liang Q L, Shi H Z, Wang K, et al. Diagnostic accuracy of adenosine deaminase in tuberculous pleurisy:a meta-analysis[J]. Respir Med, 2008, 102(5):744-754. [23] Zhou Q, Chen Y Q, Qin S M, et al. Diagnostic accuracy of T-cell interferon-gamma release assays in tuberculous pleurisy:a meta-analysis[J]. Respirology,2011, 16(3):473-480. [24] Liang Q L, Shi H Z, Qin X J, et al. Diagnostic accuracy of tumour markers for malignant pleural effusion:a meta-analysis[J]. Thorax, 2008, 63(1):35-41. [25] Luo L, Shi H Z, Liang Q L, et al. Diagnostic value of soluble mesothelin-related peptides for malignant mesothelioma:a meta-analysis[J]. Respir Med,2010, 104(1):149-156. [26] Shi H Z, Liang Q L, Jiang J, et al. Diagnostic value of carcinoembryonic antigen in malignant pleural effusion:a meta-analysis[J]. Respirology, 2008, 13(4):518-527. [27] Cui A, Jin X G, Zhai K, et al. Diagnostic values of soluble mesothelin-related peptides for malignant pleural mesothelioma:updated meta-analysis[J]. BMJ Open, 2014, 4(2):e004145. [28] Gu Y, Zhai K, Shi H Z. Clinical value of tumor markers for determining cause of pleural effusion[J]. Chin Med J (Engl), 2016,129(3):253-258. [29] Zhai K, Wang W, Wang Y, et al. Diagnostic accuracy of tumor markers for malignant pleural effusion:a derivation and validation study[J]. J Thorac Dis,2017, 9(12):5220-5229. [30] Yang Y, Liu Y L, Shi H Z. Diagnostic accuracy of combinations of tumor markers for malignant pleural effusion:An updated meta-analysis[J]. Respiration,2017, 94(1):62-69. [31] Yang M F, Tong Z H, Wang Z, et al. Development and validation of the PET-CT score for diagnosis of malignant pleural effusion[J]. Eur J Nucl Med Mol Imaging, 2019,46(7):1457-1467. [32] Wang X J, Yang Y, Wang Z, et al. Efficacy and safety of diagnostic thoracoscopy in undiagnosed pleural effusions[J]. Respiration, 2015, 90(3):251-255. [33] Wang Z, Xu L L, Wu Y B, et al. Diagnostic value and safety of medical thoracoscopy in tuberculous pleural effusion[J]. Respir Med,2015, 109(9):1188-1192. [34] Yang Y, Wu Y B, Wang Z, et al. Long-term outcome of patients with nonspecific pleurisy at medical thoracoscopy[J]. Respir Med,2017, 124:1-5. |