[1] Panjabi M M, White A R. Basic biomechanics of the spine[J]. Neurosurgery, 1980,7(1):76-93. [2] Wang T, Liu H, Zheng Z, et al. Biomechanical effect of 4-rod technique on lumbosacral fixation: an in vitro human cadaveric investigation[J]. Spine (Phila Pa 1976), 2013,38(15):E925-E929. [3] Kim Y J, Bridwell K H, Lenke L G, et al. Pseudarthrosis in adult spinal deformity following multisegmental instrumentation and arthrodesis[J]. J Bone Joint Surg Am, 2006,88(4):721-728. [4] Jain A, Kebaish K M, Sponseller P D. Sacral-alar-iliac fixation in pediatric deformity: radiographic outcomes and complications[J]. Spine Deform, 2016,4(3):225-229. [5] Hasan M Y, Liu G, Wong H K, et al. Postoperative complications of S2AI versus iliac screw in spinopelvic fixation: a Meta-analysis and recent trends review[J]. Spine J, 2020,20(6):964-972. [6] Ilyas H, Place H, Puryear A. A comparison of early clinical and radiographic complications of iliac screw fixation versus S2 alar iliac (S2AI) fixation in the adult and pediatric populations[J]. J Spinal Disord Tech, 2015,28(4):E199-E205. [7] Kwan M K, Jeffry A, Chan C Y, et al. A radiological evaluation of the morphometry and safety of S1, S2 and S2-ilium screws in the Asian population using three dimensional computed tomography scan:an analysis of 180 pelvis[J]. Surg Radiol Anat, 2012,34(3):217-227. [8] Matsukawa K, Yato Y, Kato T, et al. Cortical bone trajectory for lumbosacral fixation: penetrating S-1 endplate screw technique: technical note[J]. J Neurosurg Spine, 2014,21(2):203-209. [9] Kubaszewski L, Nowakowski A, Kaczmarczyk J. Evidence-based support for S1 transpedicular screw entry point modification[J]. J Orthop Surg Res, 2014,9:22. [10] Kostuik J P, Errico T J, Gleason T F. Techniques of internal fixation for degenerative conditions of the lumbar spine[J]. Clin Orthop Relat Res, 1986(203):219-231. [11] Han D P, Wang J Y. Comparison of different insertion techniques for lumbosacral fixation improvement: a finite element study[J]. Orthop Surg, 2020,12(1):262-268. [12] Berry C A, Thawrani D P, Makhoul F R. Inclusion of L5-S1 in oblique lumbar interbody fusion-techniques and early complications-a single center experience[J]. Spine J, 2021,21(3):418-429. [13] Tsuchiya K, Bridwell K H, Kuklo T R, et al. Minimum 5-year analysis of L5-S1 fusion using sacropelvic fixation (bilateral S1 and iliac screws) for spinal deformity[J]. Spine (Phila Pa 1976), 2006,31(3):303-308. [14] El D M, Raad M, Okafor L, et al. Sacropelvic fixation: a comprehensive review[J]. Spine Deform, 2019,7(4):509-516. [15] Mirkovic S, Abitbol J J, Steinman J, et al. Anatomic consideration for sacral screw placement[J]. Spine (Phila Pa 1976), 1991,16(Suppl 6):S289-S294. [16] Luk K D, Chen L, Lu W W. A stronger bicortical sacral pedicle screw fixation through the s1 endplate: an in vitro cyclic loading and pull-out force evaluation[J]. Spine (Phila Pa 1976), 2005,30(5):525-529. [17] Zhu Q, Lu W W, Holmes A D, et al. The effects of cyclic loading on pull-out strength of sacral screw fixation: an in vitro biomechanical study[J]. Spine (Phila Pa 1976), 2000,25(9):1065-1069. [18] Inceoglu S, Ferrara L, McLain R F. Pedicle screw fixation strength: pullout versus insertional torque[J]. Spine J, 2004,4(5):513-518. [19] Zdeblick T A, Kunz D N, Cooke M E, et al. Pedicle screw pullout strength. Correlation with insertional torque[J]. Spine (Phila Pa 1976), 1993,18(12):1673-1676. [20] Liu C W, Wang L L, Xu Y K, et al. Traditional and cortical trajectory screws of static and dynamic lumbar fixation- a finite element study[J]. BMC Musculoskelet Disord, 2020,21(1):463. [21] Matsukawa K, Yato Y, Imabayashi H, et al. Biomechanical evaluation of the fixation strength of lumbar pedicle screws using cortical bone trajectory: a finite element study[J]. J Neurosurg Spine, 2015,23(4):471-478. [22] Matsukawa K, Yato Y, Kato T, et al. In vivo analysis of insertional torque during pedicle screwing using cortical bone trajectory technique[J]. Spine (Phila Pa 1976), 2014,39(4):E240-E245. [23] Krag M H, Beynnon B D, Pope M H, et al. Depth of insertion of transpedicular vertebral screws into human vertebrae: effect upon screw-vertebra interface strength[J]. J Spinal Disord, 1988,1(4):287-294. [24] Cho W, Cho S K, Wu C. The biomechanics of pedicle screw-based instrumentation[J]. J Bone Joint Surg Br, 2010,92(8):1061-1065. [25] Kim K J, Kim D H, Lee J I, et al. Hounsfield units on lumbar computed tomography for predicting regional bone mineral density[J]. Open Med (Wars), 2019,14:545-551. [26] Schreiber J J, Anderson P A, Rosas H G, et al. Hounsfield units for assessing bone mineral density and strength: a tool for osteoporosis management[J]. J Bone Joint Surg Am, 2011,93(11):1057-1063. [27] Schreiber J J, Anderson P A, Hsu W K. Use of computed tomography for assessing bone mineral density[J]. Neurosurg Focus, 2014,37(1):E4. [28] Zaidi Q, Danisa O A, Cheng W. Measurement techniques and utility of hounsfield unit values for assessment of bone quality prior to spinal Instrumentation: a review of current literature[J]. Spine (Phila Pa 1976), 2019,44(4):E239-E244. [29] Zhang R J, Li H M, Gao H, et al. Associations between the hounsfield unit values of different trajectories and bone mineral density of vertebrae: cortical bone and traditional trajectories[J]. Am J Transl Res, 2020,12(7):3906-3916. [30] Zhang R, Gao H, Li H, et al. Differences in bone mineral density of trajectory between lumbar cortical and traditional pedicle screws[J]. J Orthop Surg Res, 2019,14(1):128. [31] Mayer M, Stephan D, Resch H, et al. Biomechanical comparison of sacral fixation characteristics of standard s1-pedicle screw fixation versus a novel constrained S1-dual-screw anchorage in the S1-pedicle and S1-alar bone[J]. Spine (Phila Pa 1976), 2015,40(24):1890-1897. |