[1]《中国心血管健康与疾病报告》 编写组.《中国心血管健康与疾病报告2021》概述[J].中国心血管病研究,2022,20(7):577-596.
[2]Avery D, Govindaraju P, Jacob M, et al. Extracellular matrix directs phenotypic heterogeneity of activated fibroblasts[J]. Matrix Biol, 2018, 67: 90-106.
[3]Nagaraju C K, Robinson E L, Abdesselem M, et al. Myofibroblast phenotype and reversibility of fibrosis in patients with end-stage heart failure[J]. J Am Coll Cardiol, 2019, 73(18): 2267-2282.
[4]Kong P, Christia P, Frangogiannis N G. The pathogenesis of cardiac fibrosis[J]. Cell Mol Life Sci, 2014, 71(4): 549-574.
[5]Bing R, Dweck M R. Myocardial fibrosis: why image, how to image and clinical implications[J]. Heart, 2019, 105(23): 1832-1840.
[6]Raina S, Lensing S Y, Nairooz R S, et al. Prognostic value of late gadolinium enhancement CMR in systemic amyloidosis[J]. JACC Cardiovasc Imaging, 2016, 9(11): 1267-1277.
[7]Aghajanian H, Kimura T, Rurik J G, et al. Targeting cardiac fibrosis with engineered T cells[J]. Nature, 2019, 573(7774): 430-433.
[8]Ambale-Venkatesh B, Lima J A C. Cardiac MRI: a central prognostic tool in myocardial fibrosis[J]. Nat Rev Cardiol, 2015, 12(1): 18-29.
[9]Mewton N, Liu C Y, Croisille P, et al. Assessment of myocardial fibrosis with cardiovascular magnetic resonance[J]. J Am Coll Cardiol, 2011, 57(8): 891-903.
[10]Gupta S, Ge Y, Singh A, et al. Multimodality imaging assessment of myocardial fibrosis[J]. JACC Cardiovasc Imaging, 2021, 14(12): 2457-2469.
[11]Frangogiannis N G. Cardiac fibrosis[J]. Cardiovasc Res, 2021, 117(6): 1450-1488.
[12]Serruys P W, Hara H, Garg S, et al. Coronary computed tomographic angiography for complete assessment of coronary artery disease: JACC state-of-the-art review[J]. J Am Coll Cardiol, 2021, 78(7): 713-736.
[13]Luis S A, Chan J, Pellikka P A. Echocardiographic assessment of left ventricular systolic function: an overview of contemporary techniques, including speckle-tracking echocardiography[J]. Mayo Clin Proc, 2019, 94(1): 125-138.
[14]Weber K T. Cardiac interstitium in health and disease: the fibrillar collagen network[J]. J Am Coll Cardiol, 1989, 13(7): 1637-1652.
[15]Lajiness J D, Conway S J. Origin, development, and differentiation of cardiac fibroblasts[J]. J Mol Cell Cardiol, 2014, 70: 2-8.
[16]Luo Y P, Pan Q Q, Yang H X, et al. Fibroblast activation protein-targeted PET/CT with 68Ga-FAPI for imaging IgG4-Related disease: comparison to 18F-FDG PET/CT[J]. J Nucl Med, 2021, 62(2): 266-271.
[17]Rosenkrans Z T, Massey C F, Bernau K, et al. [68Ga] Ga-FAPI-46 PET for non-invasive detection of pulmonary fibrosis disease activity[J]. Eur J Nucl Med Mol Imaging, 2022, 49(11): 3705-3716.
[18]Zhou Y, Yang X, Liu H P, et al. Value of [68Ga] Ga-FAPI-04 imaging in the diagnosis of renal fibrosis[J]. Eur J Nucl Med Mol Imaging, 2021, 48(11): 3493-3501.
[19]Pirasteh A, Periyasamy S, Meudt J J, et al. Staging liver fibrosis by fibroblast activation protein inhibitor PET in a human-sized swine model[J]. J Nucl Med, 2022, 63(12): 1956-1961.
[20]Xie B Q, Wang J X, Xi X Y, et al. Fibroblast activation protein imaging in reperfused ST-elevation myocardial infarction: comparison with cardiac magnetic resonance imaging[J]. Eur J Nucl Med Mol Imaging, 2022, 49(8): 2786-2797.
[21]Chen B X, Xing H Q, Gong J N, et al. Imaging of cardiac fibroblast activation in patients with chronic thromboembolic pulmonary hypertension[J]. Eur J Nucl Med Mol Imaging, 2022, 49(4): 1211-1222.
[22]Heckmann M B, Reinhardt F, Finke D, et al. Relationship between cardiac fibroblast activation protein activity by positron emission tomography and cardiovascular disease[J]. Circ Cardiovasc Imaging, 2020, 13(9): e010628.
[23]Wang L, Wang Y L, Wang J, et al. Myocardial activity at 18F-FAPI PET/CT and risk for sudden cardiac death in hypertrophic cardiomyopathy[J]. Radiology, 2023, 306(2): e221052.
[24]Varasteh Z, Mohanta S, Robu S, et al. Molecular imaging of fibroblast activity after myocardial infarction using a 68Ga-Labeled fibroblast activation protein inhibitor, FAPI-04[J]. J Nucl Med, 2019, 60(12): 1743-1749.
[25]Qiao P, Wang Y, Zhu K, et al. Noninvasive monitoring of reparative fibrosis after myocardial infarction in rats using 68Ga-FAPI-04 PET/CT[J]. Mol Pharm, 2022, 19(11): 4171-4178.
[26]Notohamiprodjo S, Nekolla S G, Robu S, et al. Imaging of cardiac fibroblast activation in a patient after acute myocardial infarction using 68Ga-FAPI-04[J]. J Nucl Cardiol, 2022, 29(5): 2254-2261.
[27]Kessler L, Kupusovic J, Ferdinandus J, et al. Visualization of fibroblast activation after myocardial infarction using 68Ga-FAPI PET[J]. Clin Nucl Med, 2021, 46(10): 807-813.
[28]Zhang M, Quan W, Zhu T, et al. [68Ga] Ga-DOTA-FAPI-04 PET/MR in patients with acute myocardial infarction: potential role of predicting left ventricular remodeling[J]. Eur J Nucl Med Mol Imaging, 2023, 50(3): 839-848.
[29]Diekmann J, Koenig T, Thackeray J T, et al. Cardiac fibroblast activation in patients early after acute myocardial infarction: integration with mr tissue characterization and subsequent functional outcome[J]. J Nucl Med, 2022, 63(9): 1415-1423.
[30]Totzeck M, Siebermair J, Rassaf T, et al. Cardiac fibroblast activation detected by positron emission tomography/computed tomography as a possible sign of cardiotoxicity[J]. Eur Heart J, 2020, 41(9): 1060.
[31]Niu N, Huo L, Zhang S, et al. Immune checkpoint inhibitor-associated cardiotoxicity detected by 68Ga-DOTATATE PET/CT and 68Ga-FAPI PET/CT[J]. Eur Heart J Cardiovasc Imaging, 2022, 23(3): e123.
[32]Finke D, Heckmann M B, Herpel E, et al. Early detection of checkpoint inhibitor-associated myocarditis using 68Ga-FAPI PET/CT[J]. Front Cardiovasc Med, 2021: 8, 614997.
[33]Wei Y C, Sun Y H, Liu J Y, et al. Early detection of radiation-induced myocardial damage by [18F]AlF-NOTA-FAPI-04 PET/CT imaging[J]. Eur J Nucl Med Mol Imaging, 2023, 50(2): 453-464.
[34]Zhang Y, Dong Z, Wang L, et al. Functional significance of myocardial activity at 18F-FAPI PET/CT in hypertrophic cardiomyopathy identified by cardiac magnetic resonance feature-tracking strain analysis[J]. Eur J Nucl Med Mol Imaging, 2023, 51(1): 110-122.
[35]Song W Y, Zhang X, He S K, et al. 68Ga-FAPI PET visualize heart failure: from mechanism to clinic[J]. Eur J Nucl Med Mol Imaging, 2023, 50(2): 475-485.
[36]Xie B Q, Li L N, Lin M M, et al. 99mTc-HFAPi imaging identifies early myocardial fibrosis in the hypertensive heart[J]. J Hypertens, 2023, 41(10): 1645-1652.
[37]Xi X Y, Wang L, Liu A J, et al. Myocardial fibroblast activation imaging in light chain cardiac amyloidosis[J]. J Nucl Cardiol, 2023, 30(4): 1690-1692.
[38]Siebermair J, Kessler L, Kupusovic J, et al. Cardiac fibroblast activation detected by 68Gallium-FAPI-46 positron emission tomography-magnetic resonance imaging as a sign of chronic activity in cardiac sarcoidosis[J]. Eur Heart J Case Rep, 2022, 6(1): ytac005.
[39]Treutlein C, Distler J H W, Tascilar K, et al. Assessment of myocardial fibrosis in patients with systemic sclerosis using [68Ga] Ga-FAPI-04-PET-CT[J]. Eur J Nucl Med Mol Imaging, 2023, 50(6): 1629-1635.
[40]Wu S M, Pang Y Z, Zhao L, et al. 68Ga-FAPI PET/CT versus 18F-FDG PET/CT for the evaluation of disease activity in takayasu arteritis[J]. Clin Nucl Med, 2021, 46(10): 847-849.
[41]Gong J N, Chen B X, Xing H Q, et al. Pulmonary artery imaging with 68Ga-FAPI-04 in patients with chronic thromboembolic pulmonary hypertension[J]. J Nucl Cardiol, 2023, 30(3): 1166-1172.
[42]Kupusovic J, Kessler L, Nekolla S G, et al. Visualization of thermal damage using 68Ga-FAPI-PET/CT after pulmonary vein isolation[J]. Eur J Nucl Med Mol Imaging, 2022, 49(5): 1553-1559.
[43]Wu M Q, Ning J, Li J L, et al. Feasibility of in vivo imaging of fibroblast activation protein in human arterial walls[J]. J Nucl Med, 2022, 63(6): 948-951.
|