[1] Jayson G C, Kohn E C, Kitchener H C, et al. Ovarian cancer[J]. Lancet, 2014, 384(9951):1376-1388. [2] Raave R, de Vries R B, Massuger L F, et al. Drug delivery systems for ovarian cancer treatment:a systematic review and meta-analysis of animal studies[J]. Peer J, 2015, 3:e1489. [3] Prat J, FIGO Committee on Gynecologic Oncology. Staging classification for cancer of the ovary, fallopian tube, and peritoneum:abridged republication of guidelines from the international federation of gynecology and obstetrics (FIGO)[J]. Obstet Gynecol, 2015, 126(1):171-174. [4] Shao M, Hollar S, Chambliss D, et al. Targeting the insulin growth factor and the vascular endothelial growth factor pathways in ovarian cancer[J]. Mol Cancer Ther, 2012, 11(7):1576-1586. [5] Cui S X, Qu X J, Gao Z H, et al. Targeting aminopeptidase N (APN/CD13) with cyclic-imide peptidomimetics derivative CIP-13F inhibits the growth of human ovarian carcinoma cells[J]. Cancer Lett, 2010, 292(2):153-162. [6] Pereira F E, Cronin C, Ghosh M, et al. CD13 is essential for inflammatory trafficking and infarct healing following permanent coronary artery occlusion in mice[J]. Cardiovasc Res, 2013, 100(1):74-83. [7] Li G, Xing Y, Wang J, et al. Near-infrared fluorescence imaging of CD13 receptor expression using a novel Cy5.5-labeled dimeric NGR peptide[J]. Amino Acids, 2014, 46(6):1547-1556. [8] Craddock K J, Chen Y, Brandwein J M, et al. CD13 expression is an independent adverse prognostic factor in adults with Philadelphia chromosome negative B cell acute lymphoblastic leukemia[J]. Leukemia Res, 2013, 37(7):759-764. [9] Zhang Z, Hu Y, Yang J, et al. Facile synthesis of folic acid-modified iron oxide nanoparticles for targeted MR imaging in pulmonary tumor xenografts[J]. Mol Imaging Biol, 2016,18(4):569-578. [10] Savla R, Garbuzenko O B, Chen S, et al. Tumor-targeted responsive nanoparticle-based systems for magnetic resonance imaging and therapy[J]. Pharm Res, 2014, 31(12):3487-3502. [11] Onoe S, Temma T, Kanazaki K, et al. Development of photostabilized asymmetrical cyanine dyes for in vivo photoacoustic imaging of tumors[J]. J Biomed Opt, 2015, 20(9):096006. [12] Luo S, Zhang E, Su Y, et al. A review of NIR dyes in cancer targeting and imaging[J]. Biomaterials, 2011, 32(29):7127-7138. [13] Chen N, Shao C, Li S, et al. Cy5.5 conjugated MnO nanoparticles for magnetic resonance/near-infrared fluorescence dual-modal imaging of brain gliomas[J]. J Colloid Interface Sci, 2015, 457:27-34. [14] Xiao N, Gu W, Wang H, et al. T1-T2 dual-modal MRI of brain gliomas using PEGylated Gd-doped iron oxide nanoparticles[J]. J Colloid Interface Sci, 2014, 417:159-165. [15] Wang Y X, Hussain S M, Krestin G P. Superparamagnetic iron oxide contrast agents:physicochemical characteristics and applications in MR imaging[J]. Eur Radiol, 2001, 11(11):2319-2331. |