[1] Wu S M, Wu B, Liu M, et al. Stroke in China: advances and challenges in epidemiology, prevention, and management[J]. Lancet Neurol, 2019, 18(4): 394-405. [2] Bragg F, Holmes M V, Iona A, et al. Association between diabetes and cause-specific mortality in rural and urban areas of China[J]. JAMA, 2017, 317(3): 280-289. [3] Wang Y J, Meng X, Wang A X, et al. Ticagrelor versus clopidogrel in CYP2C19 loss-of-function carriers with stroke or TIA[J]. N Engl J Med, 2021, 385(27): 2520-2530. [4] 彭斌, 吴波. 中国急性缺血性脑卒中诊治指南2018[J]. 中华神经科杂志, 2018, 51(9): 666-682. [5] Li W, Maloney R E, Aw T Y. High glucose, glucose fluctuation and carbonyl stress enhance brain microvascular endothelial barrier dysfunction: implications for diabetic cerebral microvasculature[J]. Redox Biol, 2015, 5: 80-90. [6] Ma Q F, Li R, Wang L J, et al. Temporal trend and attributable risk factors of stroke burden in China, 1990-2019: an analysis for the Global Burden of Disease Study 2019[J]. Lancet Public Health, 2021, 6(12): e897-e906. [7] Fuentes B, Pastor-Yborra S, Gutiérrez-Zúñiga R, et al. Glycemic variability: prognostic impact on acute ischemic stroke and the impact of corrective treatment for hyperglycemia. The GLIAS-Ⅲ translational study[J]. J Transl Med, 2020, 18(1): 414. [8] Alfieri V, Myasoedova V A, Vinci M C, et al. The role of glycemic variability in cardiovascular disorders[J]. Int J Mol Sci, 2021, 22(16): 8393. [9] Saisho Y. Glycemic variability and oxidative stress: a link between diabetes and cardiovascular disease?[J]. Int J Mol Sci, 2014, 15(10): 18381-18406. [10] Urner S, Ho F, Jha J C, et al. NADPH oxidase inhibition: preclinical and clinical studies in diabetic complications[J]. Antioxid Redox Signal, 2020, 33(6): 415-434. [11] Baudu J, Gerbaud E, Catargi B, et al. High glycemic variability: an underestimated determinant of stroke functional outcome following large vessel occlusion[J]. Rev Neurol (Paris), 2022, 178(7): 732-740. [12] Lee S H, Kim Y, Park S Y, et al. Pre-STROKE glycemic variability estimated by glycated albumin is associated with early neurological deterioration and poor functional outcome in prediabetic patients with acute ischemic stroke[J]. Cerebrovasc Dis, 2021, 50(1): 26-33. [13] 中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2017年版)[J]. 中国实用内科杂志, 2018, 38(4): 292-344. [14] Beck R W, Bergenstal R M, Cheng P Y, et al. The relationships between time in range, hyperglycemia metrics, and HbA1c[J]. J Diabetes Sci Technol, 2019, 13(4): 614-626. [15] Battelino T, Danne T, Bergenstal R M, et al. Clinical targets for continuous glucose monitoring data interpretation: recommendations from the international consensus on time in range[J]. Diabetes Care, 2019, 42(8): 1593-1603. [16] Danne T, Nimri R, Battelino T, et al. International consensus on use of continuous glucose monitoring[J]. Diabetes Care, 2017, 40(12): 1631-1640. [17] Yoo J H, Kim J H. Time in range from continuous glucose monitoring: a novel metric for glycemic control[J]. Diabetes Metab J, 2020, 44(6): 828-839. [18] Jiao X J, Shen Y F, Chen Y F. Better TIR, HbA1c, and less hypoglycemia in closed-loop insulin system in patients with type 1 diabetes: a meta-analysis[J]. BMJ Open Diabetes Res Care, 2022, 10(2): e002633. [19] González-Moreno E I, Cámara-Lemarroy C R, González-González J G, et al. Glycemic variability and acute ischemic stroke: the missing link?[J]. Transl Stroke Res, 2014, 5(6): 638-646. [20] Palaiodimou L, Lioutas V A, Lambadiari V, et al. Glycemic variability of acute stroke patients and clinical outcomes: a continuous glucose monitoring study[J]. Ther Adv Neurol Disord, 2021, 14: 17562864211045876. [21] Monnier L, Mas E, Ginet C, et al. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes[J]. JAMA, 2006, 295(14): 1681-1687. [22] Hermanides J, Vriesendorp T M, Bosman R J, et al. Glucose variability is associated with intensive care unit mortality[J]. Crit Care Med, 2010, 38(3): 838-842. |