Journal of Capital Medical University ›› 2024, Vol. 45 ›› Issue (6): 931-937.doi: 10.3969/j.issn.1006-7795.2024.06.001
Previous Articles Next Articles
Wei Xingmei, Xue Shujin, Gao Zhencheng, Li Yongxin*
Received:2024-10-24
Online:2024-12-21
Published:2024-12-18
Supported by:CLC Number:
Wei Xingmei, Xue Shujin, Gao Zhencheng, Li Yongxin. The application of artificial intelligence in cochlear implantation[J]. Journal of Capital Medical University, 2024, 45(6): 931-937.
| [1] Mintz Y, Brodie R. Introduction to artificial intelligence in medicine[J]. Minim Invasive Ther Allied Technol, 2019, 28(2): 73-81. [2] de Margerie-Mellon C, Chassagnon G. Artificial intelligence: a critical review of applications for lung nodule and lung cancer[J]. Diagn Interv Imaging, 2023, 104(1): 11-17. [3] Chen M, Copley S J, Viola P, et al. Radiomics and artificial intelligence for precision medicine in lung cancer treatment[J]. Semin Cancer Biol, 2023, 93: 97-113. [4] Sechopoulos I, Teuwen J, Mann R. Artificial intelligence for breast cancer detection in mammography and digital breast tomosynthesis: State of the art[J]. Semin Cancer Biol, 2021, 72: 214-225. [5] Sammut S J, Crispin-Ortuzar M, Chin S F, et al. Multi-omic machine learning predictor of breast cancer therapy response[J]. Nature, 2022, 601(7894): 623-629. [6] Wei F F, Azuma K, Nakahara Y, et al. Machine learning for prediction of immunotherapeutic outcome in non-small-cell lung cancer based on circulating cytokine signatures[J]. J Immunother Cancer, 2023, 11(7): e006788. [7] Zeng F G. Celebrating the one millionth cochlear implant[J]. JASA Express Lett, 2022, 2(7): 077201. [8] World Health Organization. Deafness and hearing loss[EB/OL].[2024-10-15]. https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss. [9] Gajecki T, Nogueira W. A fused deep denoising sound coding strategy for bilateral cochlear implants[J]. IEEE Trans Biomed Eng, 2024, 71(7): 2232-2242. [10] Goehring T, Bolner F, Monaghan J J, et al. Speech enhancement based on neural networks improves speech intelligibility in noise for cochlear implant users[J]. Hear Res, 2017, 344: 183-194. [11] Rapoport N, Pavelchek C, Michelson A P, et al. Artificial intelligence in otology and neurotology[J]. Otolaryngol Clin North Am, 2024, 57(5): 791-802. [12] Lesica N A, Mehta N, Manjaly J G, et al. Harnessing the power of artificial intelligence to transform hearing healthcare and research[J]. Nat Mach Intell, 2021, 3(10): 840-849. [13] Wang D L, Chen J T. Supervised speech separation based on deep learning: an overview[J]. IEEE/ACM Trans Audio Speech Lang Proces, 2018, 26(10): 1702-1726. [14] Oticon. More technology Polaris for professionals (Oticon)[EB/OL].[2024-10-16]. https://www.oticon.com/professionals/brainhearing-technology/more-technology. [15] Widex. Artificial intelligence in hearing aids[EB/OL].[2024-10-16]. https://uk.widex.pro/en-gb/evidence-technology/technological-excellence/artificial-intelligence-in-hearing-aids. [16] Gatto A, Tofanelli M, Costariol L, et al. Otological planning software-OTOPLAN: A narrative literature review[J]. Audiol Res, 2023, 13(5): 791-801. [17] Zwolan T A, Schvartz-Leyzac K C, Pleasant T. Development of a 60/60 guideline for referring adults for a traditional cochlear implant candidacy evaluation[J]. Otol Neurotol, 2020, 41(7): 895-900. [18] Patro A, Perkins E L, Ortega C A, et al. Machine learning approach for screening cochlear implant candidates: comparing with the 60/60 guideline[J]. Otol Neurotol, 2023, 44(7): e486-e491. [19] Carlson M L, Carducci V, Deep N L, et al. AI model for predicting adult cochlear implant candidacy using routine behavioral audiometry[J]. Am J Otolaryngol, 2024, 45(4): 104337. [20] 李振华. 基于深度学习的内耳自动分割及耳蜗畸形的自动诊断研究[D]. 南宁: 广西医科大学, 2022. [21] Li Z H, Zhou L T, Bin X, et al. Utility of deep learning for the diagnosis of cochlear malformation on temporal bone CT[J]. Jpn J Radiol, 2024, 42(3): 261-267. [22] Zhang D Q, Liu Y, Noble J H, et al. Localizing landmark sets in head CTs using random forests and a heuristic search algorithm for registration initialization[J]. J Med Imaging, 2017,4(4): 044007. [23] Hafeez N, Du X L, Boulgouris N, et al. Electrical impedance guides electrode array in cochlear implantation using machine learning and robotic feeder[J]. Hear Res, 2021, 412: 108371. [24] Pile J, Wanna GB, Simaan N. Robot-assisted perception augmentation for online detection of insertion failure during cochlear implant surgery[J]. Robotica, 2017, 35(7): 1598-1615. [25] Bell B, Williamson T, Gerber N, et al. An image-guided robot system for direct cochlear access[J]. Cochlear Implants Int, 2014, 15(S1): S11-S13. [26] Baron S, Eilers H, Munske B, et al. Percutaneous inner-ear access via an image-guided industrial robot system[J]. Proc Inst Mech Eng H, 2010, 224(5): 633-649. [27] Al Saadi M, Heuninck E, De Raeve L, et al. Robotic cochlear implantation in post-meningitis ossified cochlea[J]. Am J Otolaryngol, 2023, 44(1): 103668. [28] 于杰, 赵杨, 田旭, 等. 人工耳蜗植入手术入路及机器人人工耳蜗通道钻制进展[J]. 中华耳鼻咽喉头颈外科杂志, 2022, 57(11): 1363-1367. [29] Caversaccio M, Gavaghan K, Wimmer W, et al. Robotic cochlear implantation: surgical procedure and first clinical experience[J]. Acta Otolaryngol, 2017, 137(4): 447-454. [30] Topsakal V, Heuninck E, Matulic M, et al. First study in men evaluating a surgical robotic Tool providing autonomous inner ear access for cochlear implantation[J]. Front Neurol, 2022, 13: 804507. [31] Claussen A D, Kocharyan A, Bennion D M, et al. Robotics-Assisted cochlear implant insertion[J]. Otol Neurotol, 2024, 45(5): e459. [32] Chang C H, Anderson G T, Loizou P C. A neural network model for optimizing vowel recognition by cochlear implant listeners[J]. IEEE Trans Neural Syst Rehabil Eng, 2001, 9(1): 42-48. [33] Vaerenberg B, Smits C, De Ceulaer G, et al. Cochlear implant programming: a global survey on the state of the art[J]. ScientificWorldJournal, 2014, 2014: 501738. [34] Zadák J, Unbehauen R. An application of mapping neural networks and a digital signal processor for cochlear neuroprostheses[J]. Biol Cybern, 1993, 68(6): 545-552. [35] Leisenberg M. Unsupervised neural networks for speech perception with cochlear implant systems for the profoundly deaf[C]//International Workshop on Artificial Neural Networks: From Natural to Artificial Neural Computation, 1995, Heidelberg: Springer, 1995: 462-470. [36] Torresen J, Iversen A H, Greisiger R. Data from past patients used to streamline adjustment of levels for cochlear implant for new patients[C]//2016 IEEE Symposium Series on Computational Intelligence (SSCI), Greece: IEEE, 2016: 1-7. [37] Waltzman S B, Kelsall D C. The use of artificial intelligence to program cochlear implants[J]. Otol Neurotol, 2020, 41(4): 452-457. [38] Wathour J, Govaerts P J, Deggouj N. From manual to artificial intelligence fitting: Two cochlear implant case studies[J]. Cochlear Implants Int, 2020, 21(5): 299-305. [39] Li H, Helpard L, Ekeroot J, et al. Three-dimensional tonotopic mapping of the human cochlea based on synchrotron radiation phase-contrast imaging[J]. Sci Rep, 2021, 11(1): 4437. [40] Di Maro F, Carner M, Sacchetto A, et al. Frequency reallocation based on cochlear place frequencies in cochlear implants: a pilot study[J]. Eur Arch Otorhinolaryngol, 2022, 279(10): 4719-4725. [41] Jiam N T, Gilbert M, Cooke D, et al. Association between Flat-Panel computed tomographic imaging-guided Place-Pitch mapping and speech and pitch perception in cochlear implant users[J]. JAMA Otolaryngol Head Neck Surg, 2019, 145(2): 109-116. [42] Moberly A C, Bates C, Harris M S, et al. The enigma of poor performance by adults with cochlear implants[J]. Otol Neurotol, 2016, 37(10): 1522-1528. [43] Shafieibavani E, Goudey B, Kiral I, et al. Predictive models for cochlear implant outcomes: Performance, generalizability, and the impact of cohort size[J]. Trends Hear, 2021, 25: 23312165211066174. [44] Feng G Y, Ingvalson E M, Grieco-Calub T M, et al. Neural preservation underlies speech improvement from auditory deprivation in young cochlear implant recipients[J]. Proc Natl Acad Sci U S A, 2018, 115(5): E1022-E1031. [45] Tan L R, Holland S K, Deshpande A K, et al. A semi-supervised Support Vector Machine model for predicting the language outcomes following cochlear implantation based on pre-implant brain fMRI imaging[J]. Brain Behav, 2015, 5(12): e00391. [46] Lu S M, Xie J, Wei X M, et al. Machine learning-based prediction of the outcomes of cochlear implantation in patients with cochlear nerve deficiency and normal cochlea: a 2-Year Follow-Up of 70 children[J]. Front Neurosci, 2022, 16: 895560. [47] Weng J L, Xue S J, Wei X M, et al. Machine learning-based prediction of the outcomes of cochlear implantation in patients with inner ear malformation[J]. Eur Arch Otorhinolaryngol, 2024, 281(7): 3535-3545. [48] Kim H, Kang W S, Park H J, et al. Cochlear implantation in postlingually deaf adults is time-sensitive towards positive outcome: prediction using advanced machine learning techniques[J]. Sci Rep, 2018, 8(1): 18004. [49] Crowson M G, Lin V, Chen J M, et al. Machine learning and cochlear Implantation-A structured review of opportunities and challenges[J]. Otol Neurotol, 2020, 41(1): e36-e45. [50] Xue S J, Wei X M, Kong Y, et al. Trends in research on cochlear implantation with inner ear malformation: a bibliometric and visualization analysis from 1986 to 2024[J]. Eur Arch Otorhinolaryngol, 2024, 281(11): 5657-5667. |
| [1] | Guo Yan, Xia Enlan, Xiao Yu, Huang Xiaowu. Multivariate analysis of pregnancy outcomes after transcervical resection of polyp in infertility patients [J]. Journal of Capital Medical University, 2025, 46(4): 724-728. |
| [2] | Liu Honglei, Yang Yingliang, Li Ronghao, Zhu Congmin, Zhang Xu. Application of artificial intelligence in the study of cancer diagnosis and treatment research [J]. Journal of Capital Medical University, 2025, 46(3): 395-400. |
| [3] | Liu Xiaoqian, Sun Kai, Wang Xiaolin, Zhao Qianqian, Wu Xiaoxiao, Shen Fangqi, Chen Xi, Tian Chenxu, Wu Di, Song Chunhua, Xu HongXia, Cong Minghua, Shi Hanping, Jia Pingping. Comparison of the prognostic value of 15 nutritional/inflammatory indicators in postoperative cancer patients [J]. Journal of Capital Medical University, 2025, 46(3): 410-419. |
| [4] | Jiang Haiping, Yin Shuo, Li Shenglan, Li Wenbin. The progress in the role and application of neutrophils in glioma [J]. Journal of Capital Medical University, 2025, 46(3): 448-454. |
| [5] | Huang Min. Resting energy expenditure of overweight and obese people and its correlation with body compositions [J]. Journal of Capital Medical University, 2025, 46(3): 581-585. |
| [6] | Wang Yongjun, Liu Tao, Liu Ziyang, Xiong Yunyun, Jing Jing, Xie Xuewei, Li Zixiao. The applications of artificial intelligence in the field of cerebrovascular diseases [J]. Journal of Capital Medical University, 2025, 46(2): 177-183. |
| [7] | Zi Xiaohui, Xia Xue, Li jing, Zhang Xiaoli, Zhou Quan, Wang Anxin, Wang Yilong. Advances in the application of antiplatelet therapy in intravenous thrombolysis for acute ischemic stroke patients [J]. Journal of Capital Medical University, 2025, 46(2): 234-242. |
| [8] | Zhang Wanwan, Dong Xiao, Yu Erlan, Ji Xunming, Wu Chuanjie. The application of artificial intelligence in the diagnosis and treatment of cerebrovascular disease [J]. Journal of Capital Medical University, 2025, 46(1): 6-10. |
| [9] | Wang Yinping, Meng Cancan, Wu Wenjuan, Yang Zhitang. The expressions of CD62P, CD40L, and Rev-erbα after ischemic stroke on different onset times [J]. Journal of Capital Medical University, 2025, 46(1): 34-40. |
| [10] | Zhang Lifang, Wei Xingmei, Kong Ying, Yang Mengge, Gao Zhencheng, Xue Shujin, Lu Simeng, Chen Biao, Chen Jingyuan, Shi Ying, Li Yongxin. Long-term outcomes after cochlear implantation with customized electrodes via transmastoid slotted labyrinthotomy approach in patients with common cavity deformity [J]. Journal of Capital Medical University, 2024, 45(6): 946-955. |
| [11] | Xue Shujin, Wei Xingmei, Gao Zhencheng, Kong Ying, Lu Simeng, Chen Biao, Shi Ying, Cui Danmo, Li Yongxin. Anatomical characteristics of cochlear hypoplasia and postoperative outcomes of cochlear implantation [J]. Journal of Capital Medical University, 2024, 45(6): 956-965. |
| [12] | Gao Zhencheng, Lu Simeng, Wei Xingmei, Xue Shujin, Zhang Lifang, Wang Jingxian, Ma Chunling, Kong Ying, Gong Yue, Xie Jing, Chen Biao, Chen Jingyuan, Li Yongxin. The impact of cochlear and cochlear nerve development on long-term outcomes of cochlear implantation in children with cochlear nerve deficiency [J]. Journal of Capital Medical University, 2024, 45(6): 966-979. |
| [13] | Wei Xingmei, Li Yongxin. Advance of cochlear implantation for inner ear malformation [J]. Journal of Capital Medical University, 2024, 45(6): 1001-1007. |
| [14] | Pei Youjuan, Ruan Xiangyan, Ju Rui, Wang Yuejiao, Jiang Lingling, Ma Jun. The application of artificial intelligence in the reproductive endocrinology [J]. Journal of Capital Medical University, 2024, 45(4): 566-572. |
| [15] | Wu Zhaozhen, Zheng Hua, Sheng Shuyan, Zhang Quan, Zhang Hui, Li Jie, Lyu Jialin, Qian Zhe, Wang Shouzheng, Li Xi , Hu Ying. Observation on the preliminary efficacy of neoadjuvant immunotherapy combined with chemotherapy in non-small cell lung cancer [J]. Journal of Capital Medical University, 2024, 45(4): 642-648. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||