[1] International Diabetes Federation. IDF diabetes Atlas, 11th edition[R]. Brussels: International Diabetes Federation, 2025.
[2] Zhang L X, Long J Y, Jiang W S, et al. Trends in chronic kidney disease in China[J]. N Engl J Med, 2016, 375(9): 905-906.
[3] Molitch M E, Adler A I, Flyvbjerg A, et al. Diabetic kidney disease: a clinical update from kidney disease: improving global outcomes[J]. Kidney Int, 2015, 87(1): 20-30.
[4] Chen J Y, Hsu T W, Liu J H, et al. Kidney and cardiovascular outcomes among patients with CKD receiving GLP-1 receptor agonists: a systematic review and meta-analysis of randomized trials[J]. Am J Kidney Dis, 2025, 85(5): 555-569, e1.
[5] Davies M J, Bain S C, Atkin S L, et al. Efficacy and safety of liraglutide versus placebo as add-on to glucose-lowering therapy in patients with type 2 diabetes and moderate renal impairment (LIRA-RENAL): a randomized clinical trial[J]. Diabetes Care, 2016, 39(2): 222-230.
[6] Mann J F E, Ørsted D D, Brown-Frandsen K, et al. Liraglutide and renal outcomes in type 2 diabetes[J]. N Engl J Med, 2017, 377(9): 839-848.
[7] Vistisen D, Andersen G S, Hulman A, et al. Progressive decline in estimated glomerular filtration rate in patients with diabetes after moderate loss in kidney function-even without albuminuria[J]. Diabetes Care, 2019, 42(10): 1886-1894.
[8] So W Y, Kong A P, Ma R C, et al. Glomerular filtration rate, cardiorenal end points, and all-cause mortality in type 2 diabetic patients[J]. Diabetes Care, 2006, 29(9): 2046-2052.
[9] Adler A I, Stevens R J, Manley S E, et al. Development and progression of nephropathy in type 2 diabetes: the United Kingdom prospective diabetes study (UKPDS 64)[J]. Kidney Int, 2003, 63(1): 225-232.
[10] Higgins J P T, Thomas J, Chandler J, Cumpston M, Li T, Page M J, Welch V A. Cochrane Handbook for Systematic Reviews of Interventions, 2nd Edition[M]. John Wiley & Sons, 2019.
[11] 董莉, 赵积海. 利拉鲁肽对微量白蛋白尿期糖尿病 肾病患者肾功能的影响[J]. 临床荟萃, 2018, 33(5): 420-423.
[12] 菅小红, 申晶, 徐建宾, 等. 利拉鲁肽注射液治疗超重及肥胖的2型糖尿病伴微量白蛋白尿患者的临床研究[J]. 中国临床药理学杂志, 2018, 34(24): 2803-2806.
[13] Kunihiro S, Seiichi T, Chie A, et al. Greater efficacy and improved endothelial dysfunction in untreated type 2 diabetes with liraglutide versus sitagliptin[J]. Dokkyo Journal of Medical Sciences, 2014, 41(3): 211-220.
[14] Liakos A, Lambadiari V, Bargiota A, et al. Effect of liraglutide on ambulatory blood pressure in patients with hypertension and type 2 diabetes: a randomized, double-blind, placebo-controlled trial[J]. Diabetes Obes Metab, 2019, 21(3): 517-524.
[15] Nakaguchi H, Kondo Y, Kyohara M, et al. Effects of liraglutide and empagliflozin added to insulin therapy in patients with type 2 diabetes: a randomized controlled study[J]. J Diabetes Investig, 2020, 11(6): 1542-1550.
[16] Tonneijck L, Smits M M, Muskiet M H A, et al. Renal effects of DPP-4 inhibitor sitagliptin or GLP-1 receptor agonist liraglutide in overweight patients with type 2 diabetes: a 12-week, randomized, double-blind, placebo-controlled trial[J]. Diabetes Care, 2016, 39(11): 2042-2050.
[17] 沈艳萍,乔青, 李明, 等. 利拉鲁肽调控PI3K-Akt-mTOR通路改善糖尿病肾病患者病情[J]. 华中科技大学学报: 医学版, 2017, 46(4): 466-470.
[18] Bechlioulis A, Markozannes G, Chionidi I, et al. The effect of SGLT2 inhibitors, GLP1 agonists, and their sequential combination on cardiometabolic parameters: a randomized, prospective, intervention study[J]. J Diabetes Complications, 2023, 37(4): 108436.
[19] Caruso P, Maiorino M I, Longo M, et al. Liraglutide for lower limb perfusion in people with type 2 diabetes and peripheral artery disease: the STARDUST randomized clinical trial[J]. JAMA Netw Open, 2024, 7(3): e241545.
[20] 查敏, 张舒, 阮园, 等. 黄葵胶囊联合利拉鲁肽对早期糖尿病肾病患者的临床疗效[J]. 中成药, 2018, 40(7): 1493-1495.
[21] Davies M J, Bergenstal R, Bode B, et al. Efficacy of liraglutide for weight loss among patients with type 2 diabetes: the SCALE diabetes randomized clinical trial[J]. JAMA, 2015, 314(7): 687-699.
[22] Osonoi T, Saito M, Osonoi Y, et al. Liraglutide improves estimated glomerular filtration rate slopes in patients with chronic kidney disease and type 2 diabetes: a 7-year retrospective analysis[J]. Diabetes Technol Ther, 2020, 22(11): 828-834.
[23] Wexler D J, De Boer I H, Ghosh A, et al. Comparative effects of glucose-lowering medications on kidney outcomes in type 2 diabetes: the GRADE randomized clinical trial[J]. JAMA Intern Med, 2023, 183(7): 705-714.
[24] Zelniker T A, Wiviott S D, Raz I, et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials[J]. Lancet, 2019, 393(10166): 31-39.
[25] Zelniker T A, Wiviott S D, Raz I, et al. Comparison of the effects of glucagon-like peptide receptor agonists and sodium-glucose cotransporter 2 inhibitors for prevention of major adverse cardiovascular and renal outcomes in type 2 diabetes mellitus[J]. Circulation, 2019, 139(17): 2022-2031.
[26] Lee Y C, Wu L C, Wu V C, et al. Comparative effectiveness of glucagon-like peptide-1 receptor agonists and sodium/glucose cotransporter 2 inhibitors in preventing chronic kidney failure and mortality in patients with type 2 diabetes and CKD[J]. Am J Kidney Dis, 2025, 86(3): 301-313, e1.[27] Pasternak B, Wintzell V, Eliasson B, et al. Use of glucagon-like peptide 1 receptor agonists and risk of serious renal events: Scandinavian cohort study[J]. Diabetes Care, 2020, 43(6): 1326-1335.
[28] Mann J F E, Buse J B, Idorn T, et al. Potential kidney protection with liraglutide and semaglutide: exploratory mediation analysis[J]. Diabetes Obes Metab, 2021, 23(9): 2058-2066.
[29] Fujita H, Morii T, Fujishima H, et al. The protective roles of GLP-1R signaling in diabetic nephropathy: possible mechanism and therapeutic potential[J]. Kidney Int, 2014, 85(3): 579-589.
[30] Sourris K C, Ding Y, Maxwell S S, et al. Glucagon-like peptide-1 receptor signaling modifies the extent of diabetic kidney disease through dampening the receptor for advanced glycation end products-induced inflammation[J]. Kidney Int, 2024, 105(1): 132-149.
[31] Ye Y J, Zhong X, Li N, et al. Protective effects of liraglutide on glomerular podocytes in obese mice by inhibiting the inflammatory factor TNF-α-mediated NF-κB and MAPK pathway[J]. Obes Res Clin Pract, 2019, 13(4): 385-390.
[32] Li X, Jiang X, Jiang M, et al. GLP-1RAs inhibit the activation of the NLRP3 inflammasome signaling pathway to regulate mouse renal podocyte pyroptosis[J]. Acta Diabetol, 2024, 61(2): 225-234.
|