[1]American Psychiatric Association. Diagnostic and statistical manual of mental disorders: DSM-5TM[M]. 5th ed. Arlington: American Psychiatric Publishing, Inc, 2013: 100.
[2]Jauhar S, Johnstone M, McKenna P J. Schizophrenia[J]. Lancet. 2022, 399(10323): 473-486.
[3]Solmi M, Seitidis G, Mavridis D, et al. Incidence, prevalence, and global burden of schizophrenia-data, with critical appraisal, from the Global Burden of Disease (GBD) 2019[J]. Mol Psychiatry, 2023, 28(12): 5319-5327.
[4]Baxter A J, Charlson F J, Cheng H G, et al. Prevalence of mental, neurological, and substance use disorders in China and India: a systematic analysis[J]. Lancet Psychiatry, 2016, 3(9): 832-841.
[5]Veeneman R R, Vermeulen J M, Abdellaoui A, et al. Exploring the relationship between schizophrenia and cardiovascular disease: a genetic correlation and multivariable mendelian randomization study[J]. Schizophr Bull, 2022, 48(2): 463-473.
[6]Upthegrove R, Marwaha S, Birchwood M. Depression and schizophrenia: cause, consequence, or trans-diagnostic issue?[J]. Bull, 2017, 43(2): 240-244.
[7]De Sousa A, Shah B, Shrivastava A. Suicide and schizophrenia: an interplay of factors[J]. Curr Psychiatry Rep, 2020, 22(12): 65.
[8]熊江红, 姜淑珍, 杨诗雯, 等. 精神科药品不良反应1384例分析[J]. 临床合理用药, 2025, 18(7): 165-167, 174.
[9]Divac N, Prostran M, Jakovcevski I, et al. Second-generation antipsychotics and extrapyramidal adverse effects[J]. Biomed Res Int, 2014, 2014: 656370.
[10]张颖, 李刚, 王若梅. 抗精神病药物联合治疗的有效性及安全性[J]. 中国城乡企业卫生, 2018, 33(12): 48-51.
[11]Brooks J O 3rd, Goldberg J F, Ketter T A, et al. Safety and tolerability associated with second-generation antipsychotic polytherapy in bipolar disorder: findings from the systematic treatment enhancement program for bipolar disorder[J]. J Clin Psychiatry, 2011, 72(2): 240-247.
[12]Lähteenvuo M, Tiihonen J. Antipsychotic polypharmacy for the management of schizophrenia: evidence and recommendations[J]. Drugs, 2021, 81(11): 1273-1284.
[13]Wang Q Y, Sun J N, Liu X F, et al. Comparison of risk prediction models for the progression of pelvic inflammatory disease patients to sepsis: cox regression model and machine learning model[J]. Heliyon, 2023, 10(1): e23148.
[14]Hossain M E, Khan A, Moni M A, et al. Use of electronic health data for disease prediction: a comprehensive literature review[J]. IEEE/ACM Trans Comput Biol Bioinform, 2021, 18(2): 745-758.
[15]Wu Y M, Zhang W, Liang X, et al. Habitat radiomics analysis for progression free survival and immune-related adverse reaction prediction in non-small cell lung cancer treated by immunotherapy[J]. J Transl Med, 2025, 23(1): 393.
[16]Denck J, Ozkirimli E, Wang K. Machine-learning-based adverse drug event prediction from observational health data: a review[J]. Drug Discov Today, 2023, 28(9): 103715.
[17]李明, 熊晓敏, 刘猛. 人工智能在药物不良反应管理中的应用研究进展[J]. 临床药物治疗杂志, 2024, 22(12): 1-5.
[18]Hollmann N, Müller S, Purucker L, et al. Accurate predictions on small data with a tabular foundation model[J]. Nature, 2025, 637(8045): 319-326.
[19]蒋俊杰, 王法财, 沈炳香, 等. β-内酰胺类抗菌药物不良反应监测及风险预测模型的建立[J]. 儿科药学杂志, 2023, 29(11): 12-16.
[20]徐芳, 赵倩, 邢炟. 小剂量利培酮治疗首发精神分裂症患者的疗效及安全性[J]. 中国药物经济学, 2022, 17(4): 55-58.
[21]Falconer N, Scott I A, Abdel-Hafez A, et al. The adverse inpatient medication event and frailty (AIME-frail) risk prediction model[J]. Res Social Adm Pharm, 2024, 20(8): 796-803.
[22]Galletti C, Aguirre-Plans J, Oliva B, et al. Prediction of adverse drug reaction linked to protein targets using network-based information and machine learning[J]. Front Bioinform, 2022, 2: 906644.
[23]Gao Y, Zhang X, Sun Z Q, et al. Precision adverse drug reactions prediction with heterogeneous graph neural network[J]. Adv Sci, 2024, 12(4): e2404671.
[24]Heinzel C S, Purucker L, Hutter F, et al. Advancing biogeographical ancestry predictions through machine learning[J]. Forensic Sci Int Genet, 2025, 79: 103290.
[25]Espinola-Sánchez M, Limay-Rios A, Campaña-Acuña A, et al. Machine learning models for estimating fetal weight based on ultrasonographic biometry: development and validation study[J]. Digit Health, 2025, 11: 20552076251342012.
[26]Pacheco-Cardín M, Hernández-Arellano J L, Mejía-Muñoz J M, et al. Comparison of machine learning and deep learning models in manual strength prediction using anthropometric variables[J/OL]. Int J Occup Saf Ergon, 2025: 1-10. (2025-09-29)[2025-12-03]. https://pubmed.ncbi.nlm.nih.gov/41021732/.
[27]Duwe G, Mercier D, Kauth V, et al. Development of an artificial intelligence-generated, explainable treatment recommendation system for urothelial carcinoma and renal cell carcinoma to support multidisciplinary cancer conferences[J]. Eur J Cancer, 2025, 220: 115367.
[28]Lara-Abelenda F J, Chushig-Muzo D, Peiro-Corbacho P, et al. Transfer learning for a tabular-to-image approach: a case study for cardiovascular disease prediction[J]. J Biomed Inform, 2025, 165: 104821.
[29]Soliman A, Agvall B, Etminani K, et al. The price of explainability in machine learning models for 100-day readmission prediction in heart failure: retrospective, comparative, machine learning study[J]. J Med Internet Res, 2023, 25: e46934.
[30]Dorogush A V, Ershov V, Gulin A. CatBoost: gradient boosting with categorical features support[EB/OL]. (2018-10-24)[2025-12-07]. https://arxiv.org/abs/1810.11363?context=cs.MS.
[31]邹慧琴, 姜淑珍, 熊江红, 等. 1158例精神科药品不良反应回顾性分析[J]. 中国药物滥用防治杂志, 2022, 28(2): 218-224, 234.
[32]Siafis S, Wu H, Wang D F, et al. Antipsychotic dose, dopamine D2 receptor occupancy and extrapyramidal side-effects: a systematic review and dose-response meta-analysis[J]. Mol Psychiatry, 2023, 28(8): 3267-3277.
[33]张忠刚, 王洪, 孙敬. 儿科住院患者与抗生素相关的不良药物反应发生率及危险因素分析[J]. 医学信息, 2021, 34(20): 108-111.
[34]杨志伟, 王琼, 欧阳敏, 等. 老年患者药物不良反应危险因素[J]. 中国老年学杂志, 2014, 34(23): 6768-6769.
[35]Yeh T L, Lee I H, Chen P S, et al. Social support and striatal dopaminergic activities: is there a connection?[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2009, 33(7): 1141-1146.
|