[1]Carrel T, Sundt T M 3rd, Von Kodolitsch Y, et al. Acute aortic dissection[J]. Lancet, 2023, 401(10378): 773-788.
[2]Hameed I, Cifu A S, Vallabhajosyula P. Management of thoracic aortic dissection[J]. JAMA, 2023, 329(9): 756-757.
[3]Evangelista A, Isselbacher E M, Bossone E, et al. Insights from the international registry of acute aortic dissection[J]. Circulation, 2018, 137(17): 1846-1860.
[4]Yin Z Q, Han H, Yan X C, et al. Research progress on the pathogenesis of aortic dissection[J]. Curr Probl Cardiol, 2023, 48(8): 101249.
[5]Ren W H, Liu Y, Wang X R, et al. β-aminopropionitrile monofumarate induces thoracic aortic dissection in C57BL/6 mice[J]. Sci Rep, 2016, 6: 28149.
[6]Remus E W, O'Donnell R E Jr, Rafferty K, et al. The role of lysyl oxidase family members in the stabilization of abdominal aortic aneurysms[J]. Am J Physiol Heart Circ Physiol, 2012, 303(8): H1067-H1075.
[7]Luo Y T, Luo J J, An P, et al. The activator protein-1 complex governs a vascular degenerative transcriptional programme in smooth muscle cells to trigger aortic dissection and rupture[J]. Eur Heart J, 2024, 45(4): 287-305.
[8]Xie F, Cui Q K, Wang Z Y, et al. ILF3 is responsible for hyperlipidemia-induced arteriosclerotic calcification by mediating BMP2 and STAT1 transcription[J]. J Mol Cell Cardiol, 2021, 161: 39-52.
[9]Wang Z Y, Cheng J, Wang Y, et al. Macrophage ILF3 promotes abdominal aortic aneurysm by inducing inflammatory imbalance in male mice[J]. Nat Commun, 2024, 15(1): 7249.
[10]Sun Q, Ye F, Liang H, et al. Bardoxolone and bardoxolone methyl, two Nrf2 activators in clinical trials, inhibit SARS-CoV-2 replication and its 3C-like protease[J]. Signal Transduct Target Ther, 2021, 6(1): 212.
[11]Schiavoni V, Di Crescenzo T, Membrino V, et al. Bardoxolone methyl: a comprehensive review of its role as a Nrf2 activator in anticancer therapeutic applications[J]. Pharmaceuticals, 2025, 18(7): 966.
[12]Dreher L, Kuehl M B, Wenzel U O, et al. Aortic aneurysm and dissection: complement and precision medicine in aortic disease[J]. Am J Physiol Heart Circ Physiol, 2025,2025, 328(4): H814-H829.
[13]Liao M F, Liu Z Y, Bao J M, et al. A proteomic study of the aortic media in human thoracic aortic dissection: implication for oxidative stress[J]. J Thorac Cardiovasc Surg, 2008, 136(1): 65-72, 72.e1-3.
[14]McCormick M L, Gavrila D, Weintraub N L. Role of oxidative stress in the pathogenesis of abdominal aortic aneurysms[J]. Arterioscler Thromb Vasc Biol, 2007, 27(3): 461-469.
[15]Daugherty A, Cassis L A, Lu H. Complex pathologies of angiotensin II-induced abdominal aortic aneurysms[J]. J Zhejiang Univ Sci B, 2011, 12(8): 624-628.
[16]Golledge J, Thanigaimani S, Powell J T, et al. Management of abdominal aortic aneurysm[J]. Eur heart J, 2023, 44(29): 2682-2697.
[17]Sawada H, Beckner Z A, Ito S, et al. β-aminopropionitrile-induced aortic aneurysm and dissection in mice[J]. JVS Vasc Sci, 2022, 3: 64-72.
[18]Zhang J R, Liang Y W, Zeng W Y, et al. Inducing aortic aneurysm/dissection in zebrafish: evaluating the efficacy of β-aminopropionic nitrile as a model[J]. Anim Cells Syst, 2024, 28(1): 84-92.
[19]Franklin M K, Sawada H, Ito S, et al. β-aminopropionitrile induces distinct pathologies in the ascending and descending thoracic aortic regions of mice[J]. Arterioscler Thromb Vasc Biol, 2024: 44(7):1555-1569.
[20]Ganizada B H, Veltrop R J A, Akbulut A C, et al. Unveiling cellular and molecular aspects of ascending thoracic aortic aneurysms and dissections[J]. Basic Res Cardiol, 2024, 119(3): 371-395.
[21]Rylski B, Schilling O, Czerny M. Acute aortic dissection: evidence, uncertainties, and future therapies[J]. Eur Heart J, 2023, 44(10): 813-821.
[22]Van Den Heuvel L J F, Peeters S, Meester J A N, et al. An exploration of alternative therapeutic targets for aortic disease in Marfan syndrome[J]. Drug Discov Today, 2024, 29(7): 104023.
|