首都医科大学学报 ›› 2020, Vol. 41 ›› Issue (4): 536-541.doi: 10.3969/j.issn.1006-7795.2020.04.007
程姣姣, 阮祥燕, 杜娟, 谷牧青
收稿日期:2020-05-08
出版日期:2020-08-21
发布日期:2020-07-22
通讯作者:
阮祥燕
E-mail:ruanxiangyan@163.com
基金资助:Cheng Jiaojiao, Ruan Xiangyan, Du Juan, Gu Muqing
Received:2020-05-08
Online:2020-08-21
Published:2020-07-22
Supported by:摘要: 越来越多的证据证明卵巢组织冻存移植技术有效和安全,但移植后早期血管形成前的低氧期是移植卵巢组织中卵泡丢失的特别时期,因此,提高卵巢组织移植后早期卵巢组织的氧合度和血管的形成对提高移植卵巢组织的存活与卵巢功能的恢复与延长具有重要意义。本文将围绕卵巢组织移植后早期低氧期损伤、间充质干细胞的研究应用以及间充质干细胞在卵巢组织移植中的应用研究等方面进行综述。
中图分类号:
程姣姣, 阮祥燕, 杜娟, 谷牧青. 间充质干细胞对人冻融卵巢组织移植后低氧期保护作用的研究进展[J]. 首都医科大学学报, 2020, 41(4): 536-541.
Cheng Jiaojiao, Ruan Xiangyan, Du Juan, Gu Muqing. Research progress on protective effect of mesenchymal stem cells on hypoxia after human frozen-thawed ovarian tissue transplantation[J]. Journal of Capital Medical University, 2020, 41(4): 536-541.
| [1] | Siegel R L, Miller K D, Jemal A. Cancer statistics, 2018[J]. CA Cancer J Clin, 2018,68(1):7-30. |
| [2] | Schmidt R, Richter D, Sender A, et al. Motivations for having children after cancer-a systematic review of the literature[J]. Eur J Cancer Care (Engl), 2016,25(1):6-17. |
| [3] | Chemaitilly W, Li Z, Krasin M J, et al. Premature ovarian insufficiency in childhood cancer survivors:a report from the St. Jude Lifetime Cohort[J]. J Clin Endocrinol Metab, 2017,102(7):2242-2250. |
| [4] | Anderson R A, Mitchell R T, Kelsey T W, et al. Cancer treatment and gonadal function:experimental and established strategies for fertility preservation in children and young adults[J]. Lancet Diabetes Endocrinol, 2015,3(7):556-567. |
| [5] | Overbeek A, van den Berg M H, van Leeuwen F E, et al. Chemotherapy-related late adverse effects on ovarian function in female survivors of childhood and young adult cancer:A systematic review[J]. Cancer Treat Rev, 2017,53:10-24. |
| [6] | 阮祥燕, 杜娟, 卢丹, 等. 中国首例冻存卵巢组织移植报告[J]. 首都医科大学学报, 2016,6(37):840-842. |
| [7] | 阮祥燕. 卵巢组织冻存与移植中国专家共识[J]. 中国临床医生杂志, 2018,46(4):496-500. |
| [8] | Donnez J, Dolmans M M. Fertility preservation in women[J]. N Engl J Med, 2017,377(17):1657-1665. |
| [9] | 李扬璐, 阮祥燕, Alfred O. Mueck. 人卵巢组织冻存与移植研究进展[J]. 首都医科大学学报, 2017,38(4):485-491. |
| [10] | Liebenthron J, Montag M, Reinsberg J, et al. Overnight ovarian tissue transportation for centralized cryobanking:a feasible option[J]. Reprod Biomed Online, 2019,38(5):740-749. |
| [11] | Van Eyck A S, Jordan B F, Gallez B, et al. Electron paramagnetic resonance as a tool to evaluate human ovarian tissue reoxygenation after xenografting[J]. Fertil Steril, 2009,92(1):374-381. |
| [12] | Israely T, Dafni H, Nevo N, et al. Angiogenesis in ectopic ovarian xenotransplantation:multiparameter characterization of the neovasculature by dynamic contrast-enhanced MRI[J]. Magn Reson Med, 2004,52(4):741-750. |
| [13] | Roness H, Meirow D. Follicle reserve loss in ovarian tissue transplantation[J]. Reproduction, 2019,158(5):F35-F44. |
| [14] | Gavish Z, Spector I, Peer G, et al. Follicle activation is a significant and immediate cause of follicle loss after ovarian tissue transplantation[J]. J Assist Reprod Genet, 2018,35(1):61-69. |
| [15] | Cacciottola L, Manavella D D, Amorim C A, et al. In vivo characterization of metabolic activity and oxidative stress in grafted human ovarian tissue using microdialysis[J]. Fertil Steril, 2018,110(3):534-544. |
| [16] | Commin L, Buff S, Rosset E, et al. Follicle development in cryopreserved bitch ovarian tissue grafted to immunodeficient mouse[J]. Reprod Fertil Dev, 2012,24(3):461-471. |
| [17] | Harris S E, Leese H J, Gosden R G, et al. Pyruvate and oxygen consumption throughout the growth and development of murine oocytes[J]. Mol Reprod Dev, 2009,76(3):231-238. |
| [18] | Durlinger A L, Visser J A, Themmen A P. Regulation of ovarian function:the role of anti-Müllerian hormone[J]. Reproduction, 2002,124(5):601-609. |
| [19] | Ayuandari S, Winkler-Crepaz K, Paulitsch M, et al. Follicular growth after xenotransplantation of cryopreserved/thawed human ovarian tissue in SCID mice:dynamics and molecular aspects[J]. J Assist Reprod Genet, 2016,33(12):1585-1593. |
| [20] | Silber S. Ovarian tissue cryopreservation and transplantation:scientific implications[J]. J Assist Reprod Genet, 2016,33(12):1595-1603. |
| [21] | Masciangelo R, Hossay C, Chiti M C, et al. Role of the PI3K and Hippo pathways in follicle activation after grafting of human ovarian tissue[J]. J Assist Reprod Genet, 2020,37(1):101-108. |
| [22] | Kawamura K, Cheng Y, Suzuki N, et al. Hippo signaling disruption and Akt stimulation of ovarian follicles for infertility treatment[J]. Proc Natl Acad Sci U S A, 2013,110(43):17474-17479. |
| [23] | van Kasteren Y M, Schoemaker J. Premature ovarian failure:a systematic review on therapeutic interventions to restore ovarian function and achieve pregnancy[J]. Hum Reprod Update, 1999,5(5):483-492. |
| [24] | Meirow D, Roness H, Kristensen S G, et al. Optimizing outcomes from ovarian tissue cryopreservation and transplantation; activation versus preservation[J]. Hum Reprod, 2015,30(11):2453-2456. |
| [25] | Kawamura K, Cheng Y, Sun Y P, et al. Ovary transplantation:to activate or not to activate[J]. Hum Reprod, 2015,30(11):2457-2460. |
| [26] | Jensen A K, Kristensen S G, Macklon K T, et al. Outcomes of transplantations of cryopreserved ovarian tissue to 41 women in Denmark[J]. Hum Reprod, 2015,30(12):2838-2845. |
| [27] | Meirow D, Ra'Anani H, Shapira M, et al. Transplantations of frozen-thawed ovarian tissue demonstrate high reproductive performance and the need to revise restrictive criteria[J]. Fertil Steril, 2016,106(2):467-474. |
| [28] | Wilkosz P, Greggains G D, Tanbo T G, et al. Female reproductive decline is determined by remaining ovarian reserve and age[J]. PLoS One, 2014,9(10):e108343. |
| [29] | Gaytan F, Morales C, Leon S, et al. Crowding and follicular fate:spatial determinants of follicular reserve and activation of follicular growth in the mammalian ovary[J]. PLoS One, 2015,10(12):e144099. |
| [30] | Rosendahl M, Simonsen M K, Kjer J J. The influence of unilateral oophorectomy on the age of menopause[J]. Climacteric, 2017,20(6):540-544. |
| [31] | Anderson J D, Johansson H J, Graham C S, et al. Comprehensive proteomic analysis of mesenchymal stem cell exosomes reveals modulation of angiogenesis via nuclear factor-Kappa B signaling[J]. Stem Cells, 2016,34(3):601-613. |
| [32] | Stanko P, Kaiserova K, Altanerova V, et al. Comparison of human mesenchymal stem cells derived from dental pulp, bone marrow, adipose tissue, and umbilical cord tissue by gene expression[J]. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 2014,158(3):373-377. |
| [33] | Hsueh A J, Kawamura K, Cheng Y, et al. Intraovarian control of early folliculogenesis[J]. Endocr Rev, 2015,36(1):1-24. |
| [34] | Li T, Xia M, Gao Y, et al. Human umbilical cord mesenchymal stem cells:an overview of their potential in cell-based therapy[J]. Expert Opin Biol Ther, 2015,15(9):1293-1306. |
| [35] | Chandravanshi B, Bhonde R R. Human umbilical cord-derived stem cells:isolation, characterization, differentiation, and application in treating diabetes[J]. Crit Rev Biomed Eng, 2018,46(5):399-412. |
| [36] | Zhao C, Zhang L, Kong W, et al. Umbilical cord-derived mesenchymal stem cells inhibit cadherin-11 expression by fibroblast-like synoviocytes in rheumatoid arthritis[J]. J Immunol Res, 2015,2015:137695. |
| [37] | Yang Z, Du X, Wang C, et al. Therapeutic effects of human umbilical cord mesenchymal stem cell-derived microvesicles on premature ovarian insufficiency in mice[J]. Stem Cell Res Ther, 2019,10(1):250. |
| [38] | Zuk P A, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells[J]. Mol Biol Cell, 2002,13(12):4279-4295. |
| [39] | Choi J R, Yong K W, Wan S W. Effect of hypoxia on human adipose-derived mesenchymal stem cells and its potential clinical applications[J]. Cell Mol Life Sci, 2017,74(14):2587-2600. |
| [40] | Lafosse A, Desmet C, Aouassar N, et al. Autologous adipose stromal cells seeded onto a human collagen matrix for dermal regeneration in chronic wounds:clinical proof of concept[J]. Plast Reconstr Surg, 2015,136(2):279-295. |
| [41] | Schubert T, Xhema D, Veriter S, et al. The enhanced performance of bone allografts using osteogenic-differentiated adipose-derived mesenchymal stem cells[J]. Biomaterials, 2011,32(34):8880-8891. |
| [42] | Kupcova S H. Proteomic techniques for characterisation of mesenchymal stem cell secretome[J]. Biochimie, 2013,95(12):2196-2211. |
| [43] | Friedman O, Orvieto R, Fisch B, et al. Possible improvements in human ovarian grafting by various host and graft treatments[J]. Hum Reprod, 2012,27(2):474-482. |
| [44] | Mahmoodi M, Soleimani M M, Shariatzadeh S M, et al. N-acetylcysteine improves function and follicular survival in mice ovarian grafts through inhibition of oxidative stress[J]. Reprod Biomed Online, 2015,30(1):101-110. |
| [45] | Mahmoodi M, Soleimani M M, Shariatzadeh S M, et al. Effects of erythropoietin on ischemia, follicular survival, and ovarian function in ovarian grafts[J]. Reproduction, 2014,147(5):733-741. |
| [46] | Dolmans M M, Binda M M, Jacobs S, et al. Impact of the cryopreservation technique and vascular bed on ovarian tissue transplantation in cynomolgus monkeys[J]. J Assist Reprod Genet, 2015,32(8):1251-1262. |
| [47] | Damous L L, Nakamuta J S, de Carvalho A E, et al. Adipose tissue-derived stem cell therapy in rat cryopreserved ovarian grafts[J]. Stem Cell Res Ther, 2015,6:57. |
| [48] | Xia X, Yin T, Yan J, et al. Mesenchymal Stem Cells Enhance angiogenesis and follicle survival in human cryopreserved ovarian cortex transplantation[J]. Cell Transplant, 2015,24(10):1999-2010. |
| [49] | Manavella D D, Cacciottola L, Pomme S, et al. Two-step transplantation with adipose tissue-derived stem cells increases follicle survival by enhancing vascularization in xenografted frozen-thawed human ovarian tissue[J]. Hum Reprod, 2018,33(6):1107-1116. |
| [50] | Dolmans M M, Cacciottola L, Amorim C A, et al. Translational research aiming to improve survival of ovarian tissue transplants using adipose tissue-derived stem cells[J]. Acta Obstet Gynecol Scand, 2019,98(5):665-671. |
| [51] | Borsi E, Terragna C, Brioli A, et al. Therapeutic targeting of hypoxia and hypoxia-inducible factor 1 alpha in multiple myeloma[J]. Transl Res, 2015,165(6):641-650. |
| [52] | Palomaki S, Pietila M, Laitinen S, et al. HIF-1alpha is upregulated in human mesenchymal stem cells[J]. Stem Cells, 2013,31(9):1902-1909. |
| [1] | 王泽铖, 阮祥燕, 杨 瑜, 李 婧, Alfred O. Mueck. 医源性早发性卵巢功能不全性激素水平的变化及对糖代谢的影响[J]. 首都医科大学学报, 2024, 45(4): 583-588. |
| [2] | 杜 娟, 阮祥燕. 卵巢组织冻存与移植技术新进展[J]. 首都医科大学学报, 2024, 45(4): 629-635. |
| [3] | 中国人体健康科技促进会生育力保护与保存专业委员会, 国际妇科内分泌学会中国妇科内分泌学分会, 北京妇产学会内分泌分会, 中华预防医学会生育力保护分会, 中国妇幼健康研究会生殖内分泌专业委员会. 卵巢组织冻存移植防治医源性早发性卵巢功能不全临床应用指南[J]. 首都医科大学学报, 2023, 44(5): 695-703. |
| [4] | 王泽铖, 阮祥燕, 李 婧, 蒋玲玲, Alfred O.Mueck. 医源性早发性卵巢功能不全对脂代谢的影响[J]. 首都医科大学学报, 2023, 44(4): 535-539. |
| [5] | 赵 越, 阮祥燕, 谷牧青, 程姣姣, 王月姣, 金 婧. 特纳综合征患者生育及妊娠管理的研究进展[J]. 首都医科大学学报, 2023, 44(4): 561-567. |
| [6] | 尹宏宇, 魏华, 刘瑾春. 维甲酸和甲状腺激素在骨髓间充质干细胞软骨分化中的作用[J]. 首都医科大学学报, 2023, 44(2): 258-264. |
| [7] | 程姣姣, 阮祥燕, 杜娟, 谷牧青. 未成熟卵母细胞体外成熟在生育力保护中的应用进展[J]. 首都医科大学学报, 2022, 43(3): 329-335. |
| [8] | 何颖, 冯传良, 刘进营, 郑慧敏, 江圣杰. 三维微环境手性特征调控间充质干细胞线粒体功能[J]. 首都医科大学学报, 2022, 43(3): 440-445. |
| [9] | 程姣姣, 阮祥燕, 杜娟, 金凤羽, 李扬璐, 谷牧青. 卵巢组织冻存移植安全性的研究进展[J]. 首都医科大学学报, 2021, 42(4): 505-510. |
| [10] | 阮祥燕, 杨瑜, 卢丹, 杜娟, 程姣姣, 谷牧青, 李扬璐, 金凤羽, 段微, 代荫梅, 鞠蕊, 许新, MatthiasKorell, AlfredO.Mueck. 中国首例乳腺癌患者冻存卵巢组织移植成功报道及文献复习[J]. 首都医科大学学报, 2021, 42(2): 177-182. |
| [11] | 王婉晴, 靳路远. 坚持是成功的基石——范志朋教授[J]. 首都医科大学学报, 2020, 41(5): 752-755. |
| [12] | 罗建安, 杨树法, 于秀义, 刘欣, 陈振文. 克氏综合征胎儿脐带间充质干细胞模型的建立[J]. 首都医科大学学报, 2019, 40(6): 868-874. |
| [13] | 金凤羽, 阮祥燕, Alfred O. Mueck, 杜娟, 李扬璐, 程姣姣, 王虎生. 复苏后常温条件下卵巢组织活性与时间关系的初步探究[J]. 首都医科大学学报, 2019, 40(4): 544-548. |
| [14] | 程姣姣, 阮祥燕, 周琦, 李扬璐, 杜娟, 金凤羽, 谷牧青, Alfred O. Mueck. 大鼠卵巢组织体积对其动情周期及体质量的影响[J]. 首都医科大学学报, 2019, 40(4): 554-559. |
| [15] | 赵越, 阮祥燕, 王凤春, 李扬璐, 程姣姣, Alfred O. Mueck. 低氧预处理人脐带间充质干细胞治疗早发性卵巢功能不全小鼠的效果研究[J]. 首都医科大学学报, 2019, 40(4): 566-571. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||