首都医科大学学报 ›› 2025, Vol. 46 ›› Issue (5): 777-783.doi: 10.3969/j.issn.1006-7795.2025.05.003

• 智慧骨科及手术机器人临床应用 • 上一篇    下一篇

人工智能辅助诊断骨质疏松性椎体压缩骨折的效能分析

王永杰,崔利宾,袁鑫,路茜,陈学明,刘亮*   

  1. 首都医科大学附属北京潞河医院骨中心,北京  101149
  • 收稿日期:2025-07-07 修回日期:2025-08-02 出版日期:2025-10-21 发布日期:2025-10-22
  • 通讯作者: 刘亮 E-mail:liuliang@medmail.com.cn
  • 基金资助:
    北京市通州区科技计划项目(KJ2023CX032)。

Efficacy analysis of artificial intelligence-assisted diagnosis for osteoporotic vertebral compression fracture

Wang Yongjie,Cui Libin,Yuan Xin, Lu Qian, Chen Xueming, Liu Liang*   

  1. Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University,  Beijing 101149, China
  • Received:2025-07-07 Revised:2025-08-02 Online:2025-10-21 Published:2025-10-22
  • Supported by:
    This study was supported by Tongzhou District Health Development Research Project (KJ2023CX032).

摘要: 目的  对比分析人工智能阅片与人工阅片在诊断骨质疏松性椎体压缩骨折中的效能。方法  连续收集了2023年1月至2023年12月80例骨质疏松性椎体压缩骨折患者及20例无骨折但存在非特异性腰疼的患者的资料纳入了该项研究。根据患者的计算机断层扫描(computed tomography,CT)影像分别进行人工智能软件诊断和3名不同年资的脊柱外科临床医生(高级职称、中级职称、初级职称各1人)人工阅片诊断。比较不同检测方法的诊断效能。结果  各组灵敏度、特异度、阳性预测值、阴性预测值、受试者工作特征(receiver operating characteristic,ROC)曲线下面积(area under the curve,AUC)、Kappa值分别为AI 阅片:0. 975、0. 900、0. 975、0. 900、0. 938、0. 875;高级职称:0. 950、0. 900、0. 974、0. 818、0. 925、0. 819;中级职称:0. 825、0. 850、0. 957、0. 548、0. 837、0. 560;初级职称:0. 750、0. 750、0. 923、0. 429、0. 751、0. 390。结论  人工智能的诊断水平与高年资医生诊断水平相当,明显高于中级及初级临床医生的诊断水平。

关键词: 人工智能, 深度学习, 骨质疏松性椎体压缩骨折, 辅助诊断, 诊断效能, 金标准

Abstract: Objective  To compare the efficacy of artificial intelligence (AI) diagnostic group and artificial reading group in the diagnosis for osteoporotic vertebral compression fractures. Methods  From January 2023 to December 2023, 80 patients with osteoporotic vertebral compression fractures and 20 patients without fractures but with nonspecific low back pain were included in the study. According to the patient 's computed tomography(CT) image, the AI software diagnosis and physicians of different seniority (one senior physician, one intermediate physician and one junior physician) diagnosis were performed. The diagnostic efficacy of different detection methods was compared. Results  The sensitivity, specificity, positive predictive value, negative predictive value and area under the receiver operating characteristic(ROC) curve ( AUC )  and Kappa value of each group were as follows: AI image interpretation: 0.975,0.900,0.975,0.900,0.938, 0.875; senior physician: 0.950, 0.900, 0.974, 0.818, 0.925, 0.819; intermediate physician: 0.825, 0.850, 0.957, 0.548, 0.837, 0.560; and junior physician: 0.750, 0.750, 0.923, 0.429, 0.751, 0.390. Conclusion  The diagnostic performance of AI was comparable to that of senior physician, and significantly higher than that of intermediate and primary physicians.

Key words: artificial intelligence, deep learning, osteoporotic vertebral compression fracture, auxiliary diagnosis, diagnostic efficacy, gold standard

中图分类号: