[1] Ali S F, Binienda Z K, Imam S Z. Molecular aspects of dopaminergic neurodegeneration: gene-environment interaction in parkin dysfunction[J]. Int J Environ Res Public Health, 2011, 8(12):4702-4713. [2] Hauser D N, Hastings T G. Mitochondrial dysfunction and oxidative stress in Parkinson's disease and monogenic parkinsonism[J]. Neurobiol Dis, 2013, 51:35-42. [3] Yu W, Sun Y, Guo S, et al. The PINK1/Parkin pathway regulates mitochondrial dynamics and function in mammalian hippocampal and dopaminergic neurons[J]. Hum Mol Genet, 2011, 20(16):3227-3240. [4] Giaime E, Yamaguchi H, Gautier C A, et al. Loss of DJ-1 does not affect mitochondrial respiration but increases ROS production and mitochondrial permeability transition pore opening[J]. PLoS One, 2012, 7(7):e40501. [5] Huidobro C, Fernandez A F, Fraga M F, et al. Aging epigenetics: causes and consequences[J]. Mol Aspects Med, 2013, 34(4):765-781. [6] Kaas G A, Zhong C, Eason D E, et al. TET1 controls CNS 5-methylcytosine hydroxylation, active DNA demethylation, gene transcription, and memory formation[J]. Neuron, 2013, 79(6):1086-1093. [7] Rudenko A, Dawlaty M M, Seo J, et al. Tet1 is critical for neuronal activity-regulated gene expression and memory extinction[J]. Neuron, 2013, 79(6):1109-1122. [8] Zhang H, Zhang X, Clark E, et al. TET1 is a DNA-binding protein that modulates DNA methylation and gene transcription via hydroxylation of 5-methylcytosine[J]. Cell Res, 2010, 20 (12): 1390-1393. [9] Dias V, Junn E, Mouradian M M. The role of oxidative stress in Parkinson's disease[J]. J Parkinsons Dis, 2013, 3(4):461-491. [10] Bove J, Prou D, Perier C, et al. Toxin-induced models of Parkinson's disease[J]. NeuroRx, 2005, 2(3):484-494. [11] Lancu R, Mohapel P, Brundin P, et al. Behavioral characterization of a unilateral 6-OHDA-lesion model of Parkinson's disease in mice[J]. Behav Brain Res, 2005, 162(1):1-10. [12] Yuan H, Sarre S, Ebinger G, et al. Histological, behavioural and neurochemical evaluation of medial forebrain bundle and striatal 6-OHDA lesions as rat models of Parkinson's disease[J]. J Neurosci Methods, 2005, 144(1):35-45. [13] Luo D, Zhang Q, Wang H, et al. Fucoidan protects against dopaminergic neuron death in vivo and in vitro[J]. Eur J Pharmacol, 2009, 617(1-3):33-40. [14] Jackson-Lewis V, Przedborski S. Protocol for the MPTP mouse model of Parkinson's disease[J]. Nat Protoc, 2007, 2(1):141-151. [15] Grunblatt E, Mandel S, Jacob-Hirsch J, et al. Gene expression profiling of parkinsonian substantia nigra pars compacta; alterations in ubiquitin-proteasome, heat shock protein, iron and oxidative stress regulated proteins, cell adhesion/cellular matrix and vesicle trafficking genes[J]. J Neural Transm, 2004, 111(12):1543-1573. [16] Bandopadhyay R, Kingsbury A E, Cookson M R, et al. The expression of DJ-1 (PARK7) in normal human CNS and idiopathic Parkinson's disease[J]. Brain, 2004, 127 (Pt2):420-430. [17] Gandhi S, Muqit M M, Stanyer L, et al. PINK1 protein in normal human brain and Parkinson's disease[J]. Brain, 2006, 129 (Pt7):1720-1731. [18] Villeneuve L M, Purnell P R, Boska M D, et al. Early expression of parkinson,s disease-related mitochondrial abnormalities in PINK1 knockout rats[J]. Mol Neurobiol, 2014 Nov 25.[EPub ahead of Print] [19] Tahiliani M, Koh K P, Shen Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1[J]. Science, 2009, 324(5929): 930-935. [20] Ito S, D,Alessio A C, Taranova O V, et al. Role of Tet proteins in 5 mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification[J]. Nature, 2010, 466( 7310):1129- 1133. [21] Chouliaras L, Mastroeni D, Delvaux E, et al. Consistent decrease in global DNA methylation and hydroxymethylation in the hippocampus of Alzheimer's disease patients[J]. Neurobiol Aging, 2013, 34(9): 2091-2099. |