[1] Dauer W, Przedborski S. Parkinson's disease: mechanisms and models[J]. Neuron, 2003,39(6):889-909. [2] Braak H, Del Tredici K. Cortico-basal ganglia-cortical circuitry in Parkinson's disease reconsidered[J]. Exp Neurol,2008, 212(1):226-229. [3] Obeso J A, Rodriguez-Oroz M C, Goetz C G, et al. Missing pieces in the Parkinson's disease puzzle[J]. Nat Med,2010,16(6):653-661. [4] Moldovan A S, Groiss S J, Elben S, et al. The treatment of parkinson's disease with deep brain stimulation: current issues[J]. Neural Regen Res,2015,10(7):1018-1022. [5] Baizabal-Carvallo J F, Jankovic J. Movement disorders induced by deep brain stimulation[J]. Parkinsonism Relat Disord,2016(25):1-9. [6] Fitzgerald P B, Daskalakis Z J. The effects of repetitive transcranial magnetic stimulation in the treatment of depression[J]. Expert Rev Med Devices,2011,8(1):85-95. [7] Bentwich J, Dobronevsky E, Aichenbaum S, et al. Beneficial effect of repetitive transcranial magnetic stimulation combined with cognitive training for the treatment of Alzheimer's disease: a proof of concept study[J]. J Neural Transm (Vienna),2011,118(3):463-471. [8] Deng Z D, Lisanby S H, Peterchev A V. Electric field depth-focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs[J]. Brain Stimul,2013,6(1):1-13. [9] Chen R, Gerloff C, Classen J, et al. Safety of different inter-train intervals for repetitive transcranial magnetic stimulation and recommendations for safe ranges of stimulation parameters[J]. Electroencephalogr Clin Neurophysiol,1997,105(6):415-421. [10] Wassermann E M. Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5-7, 1996[J]. Electroencephalogr Clin Neurophysiol,1998,108(1):1-16. [11] Zhang Y, Mao R R, Chen Z F, et al. Deep-brain magnetic stimulation promotes adult hippocampal neurogenesis and alleviates stress-related behaviors in mouse models for neuropsychiatric disorders[J]. Mol Brain,2014(7):11. [12] Blandini F, Armentero M T. Animal models of Parkinson's disease[J]. FEBS J,2012,279(7):1156-1166. [13] Ma Y, Zhan M, OuYang L, et al. The effects of unilateral 6-OHDA lesion in medial forebrain bundle on the motor, cognitive dysfunctions and vulnerability of different striatal interneuron types in rats[J]. Behav Brain Res,2014(266):37-45. [14] Iderberg H, McCreary A C, Varney M A, et al. NLX-112, a novel 5-HT1A receptor agonist for the treatment of L-DOPA-induced dyskinesia: Behavioral and neurochemical profile in rat[J]. Exp Neurol,2015,271:335-350. [15] Domecq J P, Prutsky G, Leppin A, et al. Clinical review: Drugs commonly associated with weight change: a systematic review and meta-analysis[J]. J Clin Endocrinol Metab,2015,100(2):363-370. [16] Matsunaga S, Osawa T, Geshi M, et al. Effect of a single intrauterine administration of recombinant bovine interferon-T on day 7 of the estrous cycle on the luteal phase length and blood profile in dairy cows[J]. Res Vet Sci,2012,93(1):381-385. [17] Zhou S, Zhang B, Liu X, et al. A new natural angelica polysaccharide based colon-specific drug delivery system[J]. J Pharm Sci,2009,98(12):4756-4768. [18] de Alencar N M, da Silveira Bitencourt F, de Figueiredo I S, et al. Side-Effects of Irinotecan (CPT-11), the Clinically Used Drug for Colon Cancer Therapy, Are Eliminated in Experimental Animals Treated with Latex Proteins from Calotropis procera (Apocynaceae)[J]. Phytother Res,2017,31(2):312-320. [19] Cooper M D. The early history of B cells[J]. Nat Rev Immunol,2015,15(3):191-197. [20] Popko K, Gorska E. The role of natural killer cells in pathogenesis of autoimmune diseases[J]. Cent Eur J Immunol,2015,40(4):470-476. [21] Spitaels J, Roose K, Saelens X. Influenza and memory T cells: how to awake the force[J]. Vaccines (Basel),2016,4(4)Pii: E33. [22] Shrestha R, Shakya Shrestha S, Millingtona O, et al. Immune responses in neurodegenerative diseases[J]. Kathmandu Univ Med J (KUMJ),2014,12(45):67-76. |