[1]Hudson B I, Lippman M E. Targeting RAGE signaling in inflammatory disease[J]. Annu Rev Med, 2018, 69: 349-364.
[2]Woniak M, Konopka C J, Poska A, et al. Molecularly targeted nanoparticles: an emerging tool for evaluation of expression of the receptor for advanced glycation end products in a murine model of peripheral artery disease[J]. Cell Mol Biol Lett, 2021, 26(1):10.
[3]Ghosh S, Kapoor D, Vijayvergiya R, et al. Correlation between soluble receptor for advanced glycation end products levels and coronary artery disease in postmenopausal nondiabetic women[J]. World J Cardiol, 2021, 13(5):130-143.
[4]Cai X Y, Lu L, Wang Y N, et al. Association of increased S100B, S100A6 and S100P in serum levels with acute coronary syndrome and also with the severity of myocardial infarction in cardiac tissue of rat models with ischemia-reperfusion injury[J]. Atherosclerosis, 2011, 217(2):536-542.
[5]Jensen L J N, Lindberg S, Hoffmann S, et al. Dynamic changes in sRAGE levels and relationship with cardiac function in STEMI patients[J]. Clin Biochem, 2015, 48(4/5):297-301.
[6]Elyasi A, Voloshyna I, Ahmed S, et al. The role of interferon-γ in cardiovascular disease: an update[J]. Inflamm Res, 2020, 69(10):975-988.
[7]Whitman S C, Ravisankar P, Daugherty A. IFN-γ deficiency exerts gender-specific effects on atherogenesis in apolipoprotein E-/- mice[J]. J Interferon Cytokine Res, 2002, 22(6):661-670.
[8]Zhao Z, Wu Y, Cheng M L, et al. Activation of Th17/Th1 and Th1, but not Th17, is associated with the acute cardiac event in patients with acute coronary syndrome[J]. Atherosclerosis, 2011, 217(2):518-524.
[9]Brisslert M, Amu S, Pullerits R. Intra-peritoneal sRAGE treatment induces alterations in cellular distribution of CD19+, CD3+ and Mac-1+ cells in lymphoid organs and peritoneal cavity[J]. Cell Tissue Res, 2013, 351(1):139-148.
[10]Zhang X L, Cao X X, Dang M Q, et al. Soluble receptor for advanced glycation end-products enhanced the production of IFN-γ through the NF-κB pathway in macrophages recruited by ischemia/reperfusion[J]. Int J Mol Med, 2019, 43(6):2507-2515.
[11]Gensini G G. A more meaningful scoring system for determining the severity of coronary heart disease[J]. Am J Cardiol, 1983, 51(3):606.
[12]朱馨媛, 郭彩霞, 张立克, 等. 血浆内源性sRAGE、esRAGE、cRAGE对冠心病及其并发急性心肌梗死的诊断价值[J]. 临床心血管病杂志, 2010, 26(7):517-520.
[13]Larsen H G, Yndigegn T, Marinkovic G, et al. The soluble receptor for advanced glycation end-products (sRAGE) has a dual phase-dependent association with residual cardiovascular risk after an acute coronary event[J]. Atherosclerosis, 2019, 287: 16-23.
[14]Lindsey J B, De Lemos J A, Cipollone F, et al. Association between circulating soluble receptor for advanced glycation end products and atherosclerosis: observations from the Dallas Heart Study[J]. Diabetes Care, 2009, 32(7):1218-1220.
[15]Liu W J, Ji Y Q, Zhang W W, et al. Correlation analysis of CML, sRAGE, and esRAGE and the measure of atherosclerosis of coronary heart disease[J]. Comput Intell Neurosci, 2022, 2022: 8970860.
[16]Wang X M, Xu T T, Mungun D, et al. The relationship between plasma soluble receptor for advanced glycation end products and coronary artery disease[J]. Dis Markers, 2019, 2019: 4528382.
[17]Prasad K, Khan A S, Bhanumathy K K. Does AGE-RAGE stress play a role in the development of coronary artery disease in obesity?[J]. Int J Angiol, 2022, 31(1):1-9.
[18]McNair E D, Wells C R, Qureshi A M, et al. Inverse association between cardiac troponin-I and soluble receptor for advanced glycation end products in patients with non-ST-segment elevation myocardial infarction[J]. Int J Angiol, 2011, 20(1):49-54.
[19]Prasad K. AGE-RAGE stress and coronary artery disease[J]. Int J Angiol, 2021, 30(1):4-14.
[20]Nazari-Jahantigh M, Wei Y Y, Noels H, et al. MicroRNA-155 promotes atherosclerosis by repressing Bcl6 in macrophages[J]. J Clin Invest, 2012, 122(11):4190-4202.
[21]Scott R A, Panitch A. Decorin mimic regulates platelet-derived growth factor and interferon-γ stimulation of vascular smooth muscle cells[J]. Biomacromolecules, 2014, 15(6):2090-2103.
[22]Weng X Y, Cheng X, Wu X Y, et al. Sin3B mediates collagen type I gene repression by interferon gamma in vascular smooth muscle cells[J]. Biochem Biophys Res Commun, 2014, 447(2):263-270.
[23]Libby P. Inflammation in atherosclerosis[J]. Arterioscler Thromb Vasc Biol, 2012, 32(9):2045-2051.
[24]Akamatsu Y, Yamamoto T, Yamamoto K, et al. Porphyromonas gingivalis induces myocarditis and/or myocardial infarction in mice and IL-17A is involved in pathogenesis of these diseases[J]. Arch Oral Biol, 2011, 56(11):1290-1298.
[25]Wang H L, Zhang N, Li G R, et al. Proinflammatory cytokine IFN-γ, lncRNA BANCR and the occurrence of coronary artery disease[J]. Life Sci, 2019, 231: 116510.
[26]Yang Z C, Shi L, Xue Y, et al. Interleukin-32 increases in coronary arteries and plasma from patients with coronary artery disease[J]. Clin Chim Acta, 2019, 497: 104-109.
[27]Karnosová P, Mateánková M, Seidlerová J, et al. Soluble RAGEs and cardiovascular risk factors in adult offspring of patients with premature coronary heart disease[J]. Blood Press, 2020, 29(2):87-94.
[28]Dang M Q, Zeng X J, Chen B X, et al. Interferon-γ mediates the protective effects of soluble receptor for advanced glycation end-product in myocardial ischemia/reperfusion[J]. Lab Invest, 2019, 99(3):358-370.
|