[1]于腾飞, 何文, 甘从贵, 等. 基于深度学习超声在乳腺肿块四分类中的应用价值[J]. 中华超声影像学杂志, 2020, 29(4): 337-342.
[2]Yu T F, He W, Gan C G, et al. Deep learning applied to two-dimensional color Doppler flow imaging ultrasound images significantly improves diagnostic performance in the classification of breast masses: a multicenter study[J]. Chin Med J (Engl), 2021, 134(4): 415-424.
[3]van Leeuwen N, Lingsma H F, de Craen A J, et al. Regression discontinuity design: simulation and application in two cardiovascular trials with continuous outcomes[J]. Epidemiology, 2016, 27(4): 503-511.
[4]中华人民共和国卫生部医政司. 中国常见恶性肿瘤诊治规范 第八分册 乳腺癌[M]. 2版. 北京: 北京医科大学中国协和医科大学联合出版社, 1992: 58.
[5]Adler D D, Carson P L, Rubin J M, et al. Doppler ultrasound color flow imaging in the study of breast cancer: preliminary findings[J]. Ultrasound Med Biol, 1990, 16(6): 553-559.
[6]Ghaemian N, Haji Ghazi Tehrani N, Nabahati M. Accuracy of mammography and ultrasonography and their BI-RADS in detection of breast malignancy[J]. Caspian J Intern Med, 2021, 12(4): 573-579.
[7]He P, Cui L G, Chen W, et al. Subcategorization of ultrasonographic BI-RADS category 4: assessment of diagnostic accuracy in diagnosing breast lesions and influence of clinical factors on positive predictive value[J]. Ultrasound Med Biol, 2019, 45(5): 1253-1258.
[8]张剑, 陈卉, 徐斌, 等. 超微血管成像、高级动态血流显像、彩色多普勒血流显像对乳腺微小癌的诊断价值及其与病理肿瘤微血管密度的相关性研究[J]. 中华超声影像学杂志, 2019, 28(9): 787-793.
[9]Fuller A M, Olsson L T, Midkiff B R, et al. Vascular density of histologically benign breast tissue from women with breast cancer: associations with tissue composition and tumor characteristics[J]. Hum Pathol, 2019, 91: 43-51.
[10]蔡思曼, 王红燕, 张晓燕, 等. 智能三维超微血管成像评估乳腺病变血流的观察者间一致性分析[J]. 中华超声影像学杂志, 2020, 29(7): 613-617.
[11]Chen S H, Xiang X Z, Che P F, et al. Superb microvascular imaging for the differentiation of benign and malignant breast lesions: a system review and meta-analysis[J]. J Ultrasound Med, 2022, 42(7): 1385-1399.
|