Journal of Capital Medical University ›› 2022, Vol. 43 ›› Issue (6): 880-885.doi: 10.3969/j.issn.1006-7795.2022.06.010
• Nuclear Medicine and Molecular Imaging Assists Clinical Diagnosis and Treatment • Previous Articles Next Articles
Xu Yang, Wang Kai, Chen Qiang, Ai Lin*
Received:
2022-09-30
Online:
2022-12-21
Published:
2022-11-30
Contact:
*E-mail:ailin@bjtth.org
CLC Number:
Xu Yang, Wang Kai, Chen Qiang, Ai Lin. Advances about molecular imaging of nuclear medicine in diagnosis and treatment of glioma[J]. Journal of Capital Medical University, 2022, 43(6): 880-885.
[1] Ostrom Q T, Cioffi G, Waite K, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2014-2018[J]. Neuro Oncol, 2021, 23(12 Suppl 2): iii1-iii105. [2] Louis D N, Perry A, Wesseling P, et al. The 2021 WHO classification of tumors of the central nervous system: a summary[J]. Neuro Oncol, 2021, 23(8): 1231-1251. [3] Yang K Y, Wu Z J, Zhang H, et al. Glioma targeted therapy: insight into future of molecular approaches[J]. Mol Cancer, 2022, 21(1): 39. [4] Nicholson J G, Fine H A. Diffuse glioma heterogeneity and its therapeutic implications[J]. Cancer Discov, 2021, 11(3): 575-590. [5] Baumert B G, Hegi M E, van den Bent M J, et al. Temozolomide chemotherapy versus radiotherapy in high-risk low-grade glioma (EORTC 22033-26033): a randomised, open-label, phase 3 intergroup study[J]. Lancet Oncol, 2016, 17(11): 1521-1532. [6] 国家卫生健康委员会医政医管局, 中国抗癌协会脑胶质瘤专业委员会, 中国医师协会脑胶质瘤专业委员会. 脑胶质瘤诊疗指南(2022版)[J]. 中华神经外科杂志, 2022, 38(8): 757-777. [7] Vagvala S, Guenette J P, Jaimes C, et al. Imaging diagnosis and treatment selection for brain tumors in the era of molecular therapeutics[J]. Cancer Imaging, 2022, 22(1): 19. [8] 宁宇, 冯贵生, 蔡敏, 等. 核医学分子影像技术在外泌体活体示踪中的研究进展[J]. 国际放射医学核医学杂志, 2022, 46(1): 47-52. [9] Rowe S P, Pomper M G. Molecular imaging in oncology: current impact and future directions[J]. CA Cancer J Clin, 2022, 72(4): 333-352. [10] Yamaguchi S, Hirata K, Kobayashi H, et al. The diagnostic role of 18F-FDG PET for primary central nervous system lymphoma[J]. Ann Nucl Med, 2014, 28(7): 603-609. [11] 王凯, 吴桐, 陈谦, 等. 18F-FDG PET显像对脑内多发性高级别胶质瘤与淋巴瘤的鉴别诊断[J]. 中国临床医学影像杂志, 2022, 33(8): 577-581. [12] 靳飞, 房娜, 刘震, 等. 18F-FDG PET/CT在胶质瘤分级及其与原发性中枢神经系统淋巴瘤鉴别诊断中的价值[J]. 临床放射学杂志, 2021, 40(4): 669-673. [13] Gupta M, Gupta T, Purandare N, et al. Utility of flouro-deoxy-glucose positron emission tomography/computed tomography in the diagnostic and staging evaluation of patients with primary CNS lymphoma[J]. CNS Oncol, 2019, 8(4): CNS46. [14] Barajas R F, Politi L S, Anzalone N, et al. Consensus recommendations for MRI and PET imaging of primary central nervous system lymphoma: guideline statement from the International Primary CNS Lymphoma Collaborative Group (IPCG)[J]. Neuro Oncol, 2021, 23(7): 1056-1071. [15] 袁磊磊, 王凯, 徐洋, 等. 18F-FDG PET/CT在多发原发性中枢神经系统淋巴瘤及颅内多发胶质瘤鉴别诊断中的应用价值研究[J]. 哈尔滨医科大学学报, 2022, 56(4): 387-391, 401. [16] Li D L, Xu Y K, Wang Q S, et al. 11C-methionine and 18F-fluorodeoxyglucose positron emission tomography/CT in the evaluation of patients with suspected primary and residual/recurrent gliomas[J]. Chin Med J (Engl), 2012, 125(1): 91-96. [17] van de Weijer T, Broen M P G, Moonen R P M, et al. The use of 18F-FET-PET-MRI in neuro-oncology: the best of both worlds-a narrative review[J]. Diagnostics (Basel), 2022, 12(5): 1202. [18] Vander Borght T, Asenbaum S, Bartenstein P, et al. EANM procedure guidelines for brain tumour imaging using labelled amino acid analogues[J]. Eur J Nucl Med Mol Imaging, 2006, 33(11): 1374-1380. [19] Law I, Albert N L, Arbizu J, et al. Joint EANM/EANO/RANO practice guidelines/SNMMI procedure standards for imaging of gliomas using PET with radiolabelled amino acids and [18F]FDG: version 1.0[J]. Eur J Nucl Med Mol Imaging, 2019, 46(3): 540-557. [20] 龙亚丽, 何巧, 张冰, 等. 13N-NH3、11C-MET及18F-FDG PET/CT显像在脑胶质瘤诊断与评估中的对比研究[J]. 中华核医学与分子影像杂志, 2020, 40(3): 159-165. [21] Tsitsia V, Svolou P, Kapsalaki E, et al. Multimodality-multiparametric brain tumors evaluation[J]. Hell J Nucl Med, 2017, 20(1): 57-61. [22] Hyvönen M, Enbäck J, Huhtala T, et al. Novel target for peptide-based imaging and treatment of brain tumors[J]. Mol Cancer Ther, 2014, 13(4): 996-1007. [23] 周维燕, 华逢春, 肖见飞, 等. 11C-MET PET显像对术前脑胶质瘤分级判断及对IDH1基因突变的预测价值[J]. 中华核医学与分子影像杂志, 2020, 40(3): 153-158. [24] 何巧, 史新冲, 张林启, 等. 13N-NH3与18F-FDGPET/CT在脑胶质瘤分级评估中的对比研究[J]. 中华核医学与分子影像杂志, 2015, 35(5): 374-378. [25] Unterrainer M, Fleischmann D F, Vettermann F, et al. TSPO PET, tumour grading and molecular genetics in histologically verified glioma: a correlative 18F-GE-180 PET study[J]. Eur J Nucl Med Mol Imaging, 2020, 47(6): 1368-1380. [26] Abdo R A, Lamare F, Fernandez P, et al. Analysis of hypoxia in human glioblastoma tumors with dynamic 18F-FMISO PET imaging[J]. Australas Phys Eng Sci Med, 2019, 42(4): 981-993. [27] 吕杰, 林涛, 侯鹏, 等. 18F-FAPI-42PET/CT在脑胶质瘤分级预测中的初步研究[J]. 肿瘤影像学, 2022, 31(4): 380-387. [28] Kim D, Chun J H, Yi J H, et al. 11C-acetate PET/CT detects reactive astrogliosis helping glioma classification[J]. Clin Nucl Med, 2022, 47(10): 863-868. [29] Akgun E, Akgun M Y, Selçuk H H, et al. 68Ga PSMA PET/MR in the differentiation of low and high grade gliomas: is 68Ga PSMA PET/MRI useful to detect brain gliomas?[J]. Eur J Radiol, 2020, 130: 109199. [30] Kebir S, Rauschenbach L, Weber M, et al. Machine learning-based differentiation between multiple sclerosis and glioma WHO Ⅱ°-Ⅳ° using O-(2-[18F] fluoroethyl)-L-tyrosine positron emission tomography[J]. J Neurooncol, 2021, 152(2): 325-332. [31] Pyka T, Gempt J, Hiob D, et al. Textural analysis of pre-therapeutic [18F]-FET-PET and its correlation with tumor grade and patient survival in high-grade gliomas[J]. Eur J Nucl Med Mol Imaging, 2016, 43(1): 133-141. [32] Louis D N, Perry A, Reifenberger G, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary[J]. Acta Neuropathol,2016 ,131(6):803-820. [33] 蒋健, 张学凌, 周俊林. 胶质瘤异柠檬酸脱氢酶基因型与影像学研究进展[J]. 磁共振成像, 2021, 12(5): 103-106. [34] 周维燕, 周支瑞, 黄琪, 等. 基于18F-FET PET影像组学分析预测脑胶质瘤IDH1基因表型模型的建立与验证[J]. 中华核医学与分子影像杂志, 2021, 41(5): 275-279. [35] Weller M,Tabatabai G, Kästner B, et al. MGMT promoter methylation is a strong prognostic biomarker for benefit from dose-intensified temozolomide rechallenge in progressive glioblastoma: the DIRECTOR trial[J]. Clin Cancer Res, 2015, 21(9): 2057-2064. [36] 宁静, 于鹏, 刘家金, 等. 18F-FDG PET/CT图像的影像组学分析在胶质瘤MGMT基因甲基化状态评估中的初步应用[J]. 国际放射医学核医学杂志, 2020, 44(8): 486-492. [37] Kong Z R, Lin Y S, Jiang C D, et al. 18F-FDG-PET-based radiomics signature predicts MGMT promoter methylation status in primary diffuse glioma[J]. Cancer Imaging, 2019, 19(1): 58. [38] Haubold J,Demircioglu A, Gratz M, et al. Non-invasive tumor decoding and phenotyping of cerebral gliomas utilizing multiparametric 18F-FET PET-MRI and MR fingerprinting[J]. Eur J Nucl Med Mol Imaging, 2020, 47(6): 1435-1445. [39] Lohmann P, Stavrinou P, Lipke K, et al. FET PET reveals considerable spatial differences in tumour burden compared to conventional MRI in newly diagnosed glioblastoma[J]. Eur J Nucl Med Mol Imaging, 2019, 46(3): 591-602. [40] Takahashi M, Soma T, Mukasa A, et al. Pattern of FDG and MET distribution in high-and low-grade gliomas on PET images[J]. Clin Nucl Med, 2019, 44(4): 265-271. [41] Hirata T, Kinoshita M, Tamari K, et al. 11C-methionine-18F-FDG dual-PET-tracer-based target delineation of malignant glioma: evaluation of its geometrical and clinical features for planning radiation therapy[J]. J Neurosurg, 2019, 131(3): 676-686. [42] Hara T, Kondo T, Hara T, et al. Use of 18F-choline and 11C-choline as contrast agents in positron emission tomography imaging-guided stereotactic biopsy sampling of gliomas[J]. J Neurosurg, 2003, 99(3): 474-479. [43] Song S S, Cheng Y, Ma J, et al. Simultaneous FET-PET and contrast-enhanced MRI based on hybrid PET/MR improves delineation of tumor spatial biodistribution in gliomas: a biopsy validation study[J]. Eur J Nucl Med Mol Imaging, 2020, 47(6): 1458-1467. [44] 闫文明, 王宏伟, 郁志龙, 等. 生物靶区定位在胶质瘤术后放射治疗的临床价值研究[J]. 实用癌症杂志, 2016, 31(8): 1349-1351, 1354. [45] Matsunaga S, Shuto T, Takase H, et al. Semiquantitative analysis using thallium-201 SPECT for differential diagnosis between tumor recurrence and radiation necrosis after gamma knife surgery for malignant brain tumors[J]. Int J Radiat Oncol Biol Phys, 2013, 85(1): 47-52. [46] Schillaci O, Filippi L, Manni C, et al. Single-photon emission computed tomography/computed tomography in brain tumors[J]. Semin Nucl Med, 2007, 37(1): 34-47. [47] 张巍, 王凯, 陈谦, 等. 多模态成像技术在脑胶质瘤复发诊断中的应用与价值[J]. 中国临床医学影像杂志, 2021, 32(12): 837-840. [48] Kebir S, Fimmers R, Galldiks N, et al. Late pseudoprogression in glioblastoma: diagnostic value of dynamic O-(2-[18F]fluoroethyl)-L-Tyrosine PET[J]. Clin Cancer Res, 2016, 22(9): 2190-2196. [49] Galldiks N, Stoffels G, Filss C, et al. The use of dynamic O-(2-18F-fluoroethyl)-l-tyrosine PET in the diagnosis of patients with progressive and recurrent glioma[J]. Neuro Oncol, 2015, 17(9): 1293-1300. [50] Alexiou G A, Tsiouris S, Kyritsis A P, et al. The value of 99mTc-tetrofosmin brain SPECT in predicting survival in patients with glioblastoma multiforme[J]. J Nucl Med, 2010, 51(12): 1923-1926. [51] Smits A, Westerberg E, Ribom D. Adding 11C-methionine PET to the EORTC prognostic factors in grade 2 gliomas[J]. Eur J Nucl Med Mol Imaging, 2008, 35(1): 65-71. [52] Leiva-Salinas C, Schiff D, Flors L, et al. FDG PET/MR imaging coregistration helps predict survival in patients with glioblastoma and radiologic progression after standard of care treatment[J]. Radiology, 2017, 283(2): 508-514. [53] 王凯, 赵晓斌, 李德岭, 等. PET与MRI容积分析对脑干胶质瘤患者的预后评估[J]. 磁共振成像, 2020, 11(1): 11-15. [54] 赵晓斌, 王凯, 孔鲁, 等. 11C-蛋氨酸PET/CT联合MRI在弥漫内生型脑干胶质瘤诊断和预后评估中的作用[J]. 中华神经外科杂志, 2019, 35(9): 914-918. [55] 刘道佳, 吴君心, 唐明灯, 等. 18F-FLT PET/CT显像评估复发脑胶质瘤患者预后的价值[J]. 国际放射医学核医学杂志, 2018, 42(5): 403-408. [56] 葛璟洁, 张政伟, 陆秀宏, 等. 18F-FDOPA PET显像在脑胶质瘤中的临床应用价值[J]. 肿瘤影像学, 2016, 25(3): 213-216. [57] 董江华, 田娟, 双江. 磁共振成像和18F-FDG PET联合肿瘤标志物对胶质瘤预后的预测价值[J]. 中国肿瘤临床与康复, 2021, 28(5): 586-589. [58] Muzi M, Wolsztynski E, Fink J R, et al. Assessment of the prognostic value of radiomic features in 18F-FMISO PET imaging of hypoxia in postsurgery brain cancer patients: secondary analysis of imaging data from a single-center study and the multicenter ACRIN 6684 trial[J]. Tomography, 2020, 6(1): 14-22. [59] Li L F, Mu W, Wang Y N, et al. A non-invasive radiomic method using 18F-FDG PET predicts isocitrate dehydrogenase genotype and prognosis in patients with glioma[J]. Front Oncol, 2019, 9: 1183. |
[1] | Zhang Shu, Wang Kai, Yang Zihao, Qiao Zhen, Li Xiaotong, Yuan Leilei, Ai Lin. Application of 11C-MET PET/CT in screening isocitric dehydrogenase and 1p/19q status in supratentorial lower-grade gliomas [J]. Journal of Capital Medical University, 2022, 43(6): 826-833. |
[2] | Yan Xinting, Song Shuangshuang, Lu Jie. Study of apparent diffusion coefficient and glioma grading and molecular IDH1 mutant [J]. Journal of Capital Medical University, 2021, 42(2): 286-292. |
[3] | Shan Yi, Li Jing, Xu Xiaoyin. Functional and molecular imaging of ischemic stroke——Professor Lu Jie [J]. Journal of Capital Medical University, 2020, 41(5): 788-794. |
[4] | Jiang Tao. Precise treatment of glioma——Professor Jiang Tao [J]. Journal of Capital Medical University, 2020, 41(5): 854-859. |
[5] | Sun Mengxue, Wang Leiming, Teng Lianghong. Research progress on BRAF gene abnormality in glioma [J]. Journal of Capital Medical University, 2020, 41(3): 380-384. |
[6] | Chen Feng, Zheng Xiaohong, Li Wenbin. Immunotherapy for the treatment of glioma [J]. Journal of Capital Medical University, 2019, 40(6): 966-971. |
[7] | Yu Chunna, Jiang Bo, Li Wenbin, Chen Feng. Effects of β-hydroxybutyrate on the proliferation and glycolysis in glioma cells [J]. Journal of Capital Medical University, 2019, 40(2): 186-190. |
[8] | Zhang Chuanbao, Jiang Tao. The Second Grade National Prize for Science and Technology Progress——the innovation and application of key technologies in the diagnosis and treatment of brain glioma [J]. Journal of Capital Medical University, 2018, 39(1): 1-5. |
[9] | Zhang Wenli, Kong Fanhong, He Lu, Dong Chengya, Wang Yajie. Evaluation of biological characteristics of two u87 glioma cell lines after STR typing technique [J]. Journal of Capital Medical University, 2018, 39(1): 74-78. |
[10] | Li Yan, Shi Rui, Chen Jianxin, Li Shan, Kang Xun, Cheng Jing, Zhao Kaihong, Li Wenbin. Treatment of high grade glioma with VM-26 and DDP in 30 cases [J]. Journal of Capital Medical University, 2015, 36(5): 786-790. |
[11] | Zhang Luyong, Luo Feiya, Hu Peili, Shan Chun, Zhang Miao. Ceramide induces autophagic cell death in glioma cell through JNK-c-Jun pathway [J]. Journal of Capital Medical University, 2015, 36(2): 276-281. |
[12] | XING Shushan, HU Wanning, ZHAO Xiqing, LIU Wenqing, GONG Jian. Interleukin 1 receptor accessory protein contributes to children and adult low grade gliomas [J]. Journal of Capital Medical University, 2013, 34(2): 258-263. |
[13] | KANG Xun;LI Shan;XIE Zheng-zheng;ZHAO Yan-jie;JIANG Ni;ZHOU Lei;LI Wen-bin. Temozolomide adverse events and coping strategies in malignant glioma patients with concurrent chemoradiotherapy [J]. Journal of Capital Medical University, 2012, 33(5): 589-593. |
[14] | GENG Su-min;ZHANG Li-wei;HAO Shu-yu;WU Zhen;JIA Gui-jun;ZHANG Jun-ting . Gangliogliomas arising from the thalamus: Report of 6 cases and literature review [J]. Journal of Capital Medical University, 2012, 33(2): 259-262. |
[15] | LU Zheng;LIAO Hao;XIE Jian. The Surgical Skill and Outcome of Extended Resection of Frontopolar Glioma [J]. Journal of Capital Medical University, 2010, 31(5): 653-656. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||