Journal of Capital Medical University
Previous Articles Next Articles
Zhao Shaozhi, Cao Yong*
Received:
2024-04-25
CLC Number:
Zhao Shaozhi, Cao Yong. Somatic mutations in endothelial cells and cerebral vascular malformations[J]. Journal of Capital Medical University, doi: 10.3969/j.issn.1006-7795.2024.03.002.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: https://journal03.magtech.org.cn/Jweb_sdykdxxb/EN/10.3969/j.issn.1006-7795.2024.03.002
[1]Toulgoat F, Lasjaunias P. Vascular malformations of the brain[J]. Handb Clin Neurol, 2013, 112: 1043-1051. [2]Zafar A, Fiani B, Hadi H, et al. Cerebral vascular malformations and their imaging modalities[J]. Neurol Sci, 2020, 41(9):2407-2421. [3]Brown R D Jr, Flemming K D, Meyer F B, et al. Natural history, evaluation, and management of intracranial vascular malformations[J]. Mayo Clin Proc, 2005, 80:269-281. [4]Spetzler R F, Martin N A. A proposed grading system for arteriovenous malformations[J]. J Neurosurg, 1986, 65(4):476-483. [5]Milholland B, Dong X, Zhang L, et al. Differences between germline and somatic mutation rates in humans and mice[J]. Nat Commun, 2017, 8:15183. [6]Maury E A, Walsh C A, Kahle K T. Neurosurgery elucidates somatic mutations[J]. Science, 2023, 382(6677):1360-1362. [7]Lawton M T, Rutledge W C, Kim H, et al. Brain arteriovenous malformations[J]. Nat Rev Dis Primers, 2015, 1:15008. [8]Nikolaev S I, Vetiska S, Bonilla X, et al. Somatic activating KRAS mutations in arteriovenous malformations of the brain[J]. N Engl J Med, 2018, 378(3):250-261. [9]Li H, Nam Y, Huo R, et al. De novo germline and somatic variants convergently promote endothelial-to-mesenchymal transition in simplex brain arteriovenous malformation[J]. Circ Res, 2021, 129:825-839. [10]Hong T, Yan Y P, Li J W, et al. High prevalence of KRAS/BRAF somatic mutations in brain and spinal cord arteriovenous malformations[J]. Brain, 2019, 142(1):23-34. [11]Xu H Y, Huo R, Li H, et al. KRAS mutation-induced EndMT of brain arteriovenous malformation is mediated through the TGF-β/BMP-SMAD4 pathway[J]. Stroke Vasc Neurol, 2023, 8(3):197-206. [12]He Q H, Huo R, Wang J, et al. Exosomal miR-3131 derived from endothelial cells with KRAS mutation promotes EndMT by targeting PICK1 in brain arteriovenous malformations[J]. CNS Neurosci Ther, 2023, 29(5):1312-1324. [13]Al-Holou W N, O′Lynnger T M, Pandey A S, et al. Natural history and imaging prevalence of cavernous malformations in children and young adults[J]. J Neurosurg Pediatr, 2012, 9(2):198-205. [14]Chohan M O, Marchiò S, Morrison L A, et al. Emerging pharmacologic targets in cerebral cavernous malformation and potential strategies to alter the natural history of a difficult disease: a review[J]. JAMA Neurol, 2019, 76(4):492-500. [15]Riant F, Bergametti F, Ayrignac X, et al. Recent insights into cerebral cavernous malformations: the molecular genetics of CCM[J]. FEBS J, 2010, 277(5):1070-1075. [16]Akers A, Al-Shahi Salman R, A Awad I, et al. Synopsis of guidelines for the clinical management of cerebral cavernous malformations: consensus recommendations based on systematic literature review by the angioma alliance scientific advisory board clinical experts panel[J]. Neurosurgery, 2017, 80(5):665-680. [17]Sahoo T, Johnson E W, Thomas J W, et al. Mutations in the gene encoding KRIT1, a Krev-1/rap1a binding protein, cause cerebral cavernous malformations (CCM1)[J]. Hum Mol Genet, 1999, 8(12):2325-2333. [18]Laberge-le Couteulx S, Jung H H, Labauge P, et al. Truncating mutations in CCM1, encoding KRIT1, cause hereditary cavernous angiomas[J]. Nat Genet, 1999, 23(2):189-193. [19]Denier C, Goutagny S, Labauge P, et al. Mutations within the MGC4607 gene cause cerebral cavernous malformations[J]. Am J Hum Genet, 2004, 74(2):326-337. [20]Liquori C L, Berg M J, Siegel A M, et al. Mutations in a gene encoding a novel protein containing a phosphotyrosine-binding domain cause type 2 cerebral cavernous malformations[J]. Am J Hum Genet, 2003, 73(6): 1459-1464. [21]Bergametti F, Denier C, Labauge P, et al. Mutations within the programmed cell death 10 gene cause cerebral cavernous malformations[J]. Am J Hum Genet, 2005, 76(1):42-51. [22]Snellings D A, Hong C C, Ren A A, et al. Cerebral cavernous malformation: from mechanism to therapy[J]. Circ Res, 2021, 129(1):195-215. [23]Gault J, Shenkar R, Recksiek P, et al. Biallelic somatic and germ line CCM1 truncating mutations in a cerebral cavernous malformation lesion[J]. Stroke, 2005, 36(4):872-874. [24]Gault J, Awad I A, Recksiek P, et al. Cerebral cavernous malformations: somatic mutations in vascular endothelial cells[J]. Neurosurgery, 2009, 65(1):138-144. [25]McDonald D A, Shi C B, Shenkar R, et al. Lesions from patients with sporadic cerebral cavernous malformations harbor somatic mutations in the CCM genes: evidence for a common biochemical pathway for CCM pathogenesis[J]. Hum Mol Genet, 2014, 23(16):4357-4370. [26]Ren A A, Snellings D A, Su Y S, et al. PIK3CA and CCM mutations fuel cavernomas through a cancer-like mechanism[J]. Nature, 2021, 594(7862):271-276. [27]Weng J C, Yang Y X, Song D, et al. Somatic MAP3K3 mutation defines a subclass of cerebral cavernous malformation[J]. Am J Hum Genet, 2021, 108(5):942-950. [28]Hong T, Xiao X, Ren J, et al. Somatic MAP3K3 and PIK3CA mutations in sporadic cerebral and spinal cord cavernous malformations[J]. Brain, 2021, 144(9):2648-2658. [29]Ressler A K, Snellings D A, Girard R, et al. Single-nucleus DNA sequencing reveals hidden somatic loss-of-heterozygosity in cerebral cavernous malformations[J]. Nat Commun, 2023, 14(1):7009. [30]Huo R, Yang Y X, Sun Y F, et al. Endothelial hyperactivation of mutant MAP3K3 induces cerebral cavernous malformation enhanced by PIK3CA GOF mutation[J]. Angiogenesis, 2023, 26(2):295-312. [31]Naik S, Phadke R V, Taunk A, et al. Dynamic contrast-enhanced magnetic resonance imaging in diagnosis of cavernous hemangioma of cavernous sinus[J]. J Neurosci Rural Pract, 2017, 8(2):311-313. [32]Linskey M E, Sekhar L N. Cavernous sinus hemangiomas: a series, a review, and an hypothesis[J]. Neurosurgery, 1992, 30(1):101-108. [33]Huo R, Yang Y X, Xu H Y, et al. Somatic GJA4 mutation in intracranial extra-axial cavernous hemangiomas[J]. Stroke Vasc Neurol, 2023, 8(6):453-462. [34]Wang J, Tang J H, Yang Y X, et al. Genotype-phenotype correlations in multiple lesions of familial cerebral cavernous malformations concerning phosphatidylinositol 3-kinase catalytic subunit alpha mutations[J]. Clin Transl Med, 2024, 14(3):e1610. [35]Fu W L, Huo R, Yan Z H, et al. Mesenchymal behavior of the endothelium promoted by SMAD6 downregulation is associated with brain arteriovenous malformation microhemorrhage[J]. Stroke, 2020, 51(7):2197-2207. [36]Pawlikowska L, Tran M N, Achrol A S, et al. Polymorphisms in genes involved in inflammatory and angiogenic pathways and the risk of hemorrhagic presentation of brain arteriovenous malformations[J]. Stroke, 2004, 35(10):2294-2300. [37]Achrol A S, Pawlikowska L, McCulloch C E, et al. Tumor necrosis factor-alpha-238G>A promoter polymorphism is associated with increased risk of new hemorrhage in the natural course of patients with brain arteriovenous malformations[J]. Stroke, 2006, 37(1):231-234. [38]Pawlikowska L, Tran M N, Achrol A S, et al. Polymorphisms in transforming growth factor-beta-related genes ALK1 and ENG are associated with sporadic brain arteriovenous malformations[J]. Stroke, 2005, 36(10):2278-2280. [39]Hartmann K, Sadée C Y, Satwah I, et al. Imaging genomics: data fusion in uncovering disease heritability[J]. Trends Mol Med, 2023, 29(2):141-151. [40]Zabramski J M, Wascher T M, Spetzler R F, et al. The natural history of familial cavernous malformations: results of an ongoing study[J]. J Neurosurg, 1994, 80(3):422-432. [41]Zhou L F, Mao Y, Chen L. Diagnosis and surgical treatment of cavernous sinus hemangiomas: an experience of 20 cases[J]. Surg Neurol, 2003, 60(1):31-36. [42]Shi J, Hang C, Pan Y, et al. Cavernous hemangiomas in the cavernous sinus[J]. Neurosurgery, 1999, 45(6):1308-1313. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||