Journal of Capital Medical University ›› 2023, Vol. 44 ›› Issue (1): 62-71.doi: 10.3969/j.issn.1006-7795.2023.01.010
• Basic and Clinical Research on Cerebrovascular Diseases • Previous Articles Next Articles
Li Xue, Fan Junfen, Wang Rongliang, Ma Qingfeng, Luo Yumin, Zhao Haiping*
Received:
2022-11-01
Online:
2023-02-21
Published:
2023-01-13
Contact:
*E-mail: zhaohaiping@xwhosp.org
Supported by:
CLC Number:
Li Xue, Fan Junfen, Wang Rongliang, Ma Qingfeng, Luo Yumin, Zhao Haiping. Epigenetic regulation of HDAC2 on TBC protein family members of neutrophils in patients with ischemic stroke[J]. Journal of Capital Medical University, 2023, 44(1): 62-71.
[1] Orellana-Urzúa S, Rojas I, Líbano L, et al. Pathophysiology of ischemic stroke: role of oxidative stress[J]. Curr Pharm Des, 2020, 26(34): 4246-4260. [2] Paul S, Candelario-Jalil E. Emerging neuroprotective strategies for the treatment of ischemic stroke: an overview of clinical and preclinical studies[J]. Exp Neurol, 2021, 335: 113518. [3] Xu S B, Lu J A, Shao A W, et al. Glial cells: role of the immune response in ischemic stroke[J]. Front Immunol, 2020, 11: 294. [4] Maida C D, Norrito R L, Daidone M, et al. Neuroinflammatory mechanisms in ischemic stroke: focus on cardioembolic stroke, background, and therapeutic approaches[J]. Int J Mol Sci, 2020, 21(18): 6454. [5] Mendelson S J, Prabhakaran S. Diagnosis and management of transient ischemic attack and acute ischemic stroke: a review[J]. JAMA, 2021, 325(11): 1088-1098. [6] Jia T X, Wang M J, Yan W J, et al. Upregulation of miR-489-3p attenuates cerebral ischemia/reperfusion injury by targeting histone deacetylase 2 (HDAC2)[J]. Neuroscience, 2022, 484: 16-25. [7] Jian Z H, Liu R, Zhu X Q, et al. The involvement and therapy target of immune cells after ischemic stroke[J]. Front Immunol, 2019, 10: 2167. [8] Cai W, Liu S X, Hu M Y, et al. Functional dynamics of neutrophils after ischemic stroke[J]. Transl Stroke Res, 2020, 11(1): 108-121. [9] Otxoa-de-Amezaga A, Gallizioli M, Pedragosa J, et al. Location of neutrophils in different compartments of the damaged mouse brain after severe ischemia/reperfusion[J]. Stroke, 2019, 50(6): 1548-1557. [10] Kang L J, Yu H L, Yang X, et al. Neutrophil extracellular traps released by neutrophils impair revascularization and vascular remodeling after stroke[J]. Nat Commun, 2020, 11(1): 2488. [11] Herz J, Sabellek P, Lane T E, et al. Role of neutrophils in exacerbation of brain injury after focal cerebral ischemia in hyperlipidemic mice[J]. Stroke, 2015, 46(10): 2916-2925. [12] Neumann J, Riek-Burchardt M, Herz J, et al. Very-late-antigen-4 (VLA-4)-mediated brain invasion by neutrophils leads to interactions with microglia, increased ischemic injury and impaired behavior in experimental stroke[J]. Acta Neuropathol, 2015, 129(2): 259-277. [13] Lehman H K, Segal B H. The role of neutrophils in host defense and disease[J]. J Allergy Clin Immunol, 2020, 145(6): 1535-1544. [14] Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation[J]. Nat Rev Immunol, 2013, 13(3): 159-175. [15] Anderson M C, Chaze T, Coïc Y M, et al. MUB40 binds to lactoferrin and stands as a specific neutrophil marker[J]. Cell Chem Biol, 2018, 25(4): 483-493.e9. [16] Anderson M C, Injarabian L, Andre A, et al. The MUB40 peptide for use in detecting neutrophil-mediated inflammation events[J/OL]. J Vis Exp. (2019-01-07)[2021-01-03]. https://pubmed.ncbi.nlm.nih.gov/30663636/. [17] Palm F, Pussinen P J, Safer A, et al. Serum matrix metalloproteinase-8, tissue inhibitor of metalloproteinase and myeloperoxidase in ischemic stroke[J]. Atherosclerosis, 2018, 271: 9-14. [18] Kaesmacher J, Boeckh-Behrens T, Simon S, et al. Risk of thrombus fragmentation during endovascular stroke treatment[J]. AJNR Am J Neuroradiol, 2017, 38(5): 991-998. [19] Abdelnaseer M M, Elfauomy N M, Esmail E H, et al. Matrix metalloproteinase-9 and recovery of acute ischemic stroke[J]. J Stroke Cerebrovasc Dis, 2017, 26(4): 733-740. [20] Zhong C K, Yang J Y, Xu T, et al. Serum matrix metalloproteinase-9 levels and prognosis of acute ischemic stroke[J]. Neurology, 2017, 89(8): 805-812. [21] Denorme F, Portier I, Rustad J L, et al. Neutrophil extracellular traps regulate ischemic stroke brain injury[J]. J Clin Invest, 2022, 132(10): e154225. [22] Nakahashi-Oda C, Fujiyama S, Nakazawa Y, et al. CD300a blockade enhances efferocytosis by infiltrating myeloid cells and ameliorates neuronal deficit after ischemic stroke[J]. Sci Immunol, 2021, 6(64): eabe7915. [23] Doran A C, Yurdagul A, Jr, Tabas I. Efferocytosis in health and disease[J]. Nat Rev Immunol, 2020, 20(4): 254-267. [24] Kolb J P, Oguin T H 3rd, Oberst A, et al. Programmed cell death and inflammation: winter is coming[J]. Trends Immunol, 2017, 38(10): 705-718. [25] Li F F, Zhao H P, Li G W, et al. Intravenous antagomiR-494 lessens brain-infiltrating neutrophils by increasing HDAC2-mediated repression of multiple MMPs in experimental stroke[J]. FASEB J, 2020, 34(5): 6934-6949. [26] Ramadass M, Catz S D. Molecular mechanisms regulating secretory organelles and endosomes in neutrophils and their implications for inflammation[J]. Immunol Rev, 2016, 273(1): 249-265. [27] Perskvist N, Roberg K, Kulyté A, et al. Rab5a GTPase regulates fusion between pathogen-containing phagosomes and cytoplasmic organelles in human neutrophils[J]. J Cell Sci, 2002, 115(Pt 6): 1321-1330. [28] Johnson J L, He J, Ramadass M, et al. Munc13-4 is a Rab11-binding protein that regulates Rab11-positive vesicle trafficking and docking at the plasma membrane[J]. J Biol Chem, 2016, 291(7): 3423-3438. [29] Vieira O V, Botelho R J, Grinstein S. Phagosome maturation: aging gracefully[J]. Biochem J, 2002, 366(Pt 3): 689-704. [30] Zerial M, McBride H. Rab proteins as membrane organizers[J]. Nat Rev Mol Cell Biol, 2001, 2(2): 107-117. [31] Rao X S, Cong X X, Gao X K, et al. AMPK-mediated phosphorylation enhances the auto-inhibition of TBC1D17 to promote Rab5-dependent glucose uptake[J]. Cell Death Differ, 2021, 28(12): 3214-3234. [32] Toyofuku T, Morimoto K, Sasawatari S, et al. Leucine-rich repeat kinase 1 regulates autophagy through turning on TBC1D2-dependent Rab7 inactivation[J]. Mol Cell Biol, 2015, 35(17): 3044-3058. [33] Nishino H, Saito T, Wei R, et al. The LMTK1-TBC1D9B-Rab11A cascade regulates dendritic spine formation via endosome trafficking[J]. J Neurosci, 2019, 39(48): 9491-9502. [34] Xie Y, Mansouri M, Rizk A, et al. Regulation of VEGFR2 trafficking and signaling by Rab GTPase-activating proteins[J]. Sci Rep, 2019, 9(1): 13342. [35] Biesemann A, Gorontzi A, Barr F, et al. Rab35 protein regulates evoked exocytosis of endothelial Weibel-Palade bodies[J]. J Biol Chem, 2017, 292(28): 11631-11640. [36] Villagomez F R, Diaz-Valencia J D, Ovalle-García E, et al. TBC1D10C is a cytoskeletal functional linker that modulates cell spreading and phagocytosis in macrophages[J]. Sci Rep, 2021, 11(1): 20946. [37] Hisanaga S I, Wei R, Huo A N, et al. LMTK1, a novel modulator of endosomal trafficking in neurons[J]. Front Mol Neurosci, 2020, 13: 112. [38] Liao Y, Li M, Chen X Y, et al. Interaction of TBC1D9B with mammalian ATG8 homologues regulates autophagic flux[J]. Sci Rep, 2018, 8(1): 13496. [39] Krämer O H. HDAC2: a critical factor in health and disease[J]. Trends Pharmacol Sci, 2009, 30(12): 647-655. [40] Gediya P, Parikh P K, Vyas V K, et al. Histone deacetylase 2: a potential therapeutic target for cancer and neurodegenerative disorders[J]. Eur J Med Chem, 2021, 216: 113332. [41] Ito K, Herbert C, Siegle J S, et al. Steroid-resistant neutrophilic inflammation in a mouse model of an acute exacerbation of asthma[J]. Am J Respir Cell Mol Biol, 2008, 39(5): 543-550. [42] Rodríguez-López G M, Soria-Castro R, Campillo-Navarro M, et al. The histone deacetylase inhibitor valproic acid attenuates phospholipase Cγ2 and IgE-mediated mast cell activation[J]. J Leukoc Biol, 2020, 108(3): 859-866. [43] Shi X M, Li M, Cui M Z, et al. Epigenetic suppression of the antitumor cytotoxicity of NK cells by histone deacetylase inhibitor valproic acid[J]. Am J Cancer Res, 2016, 6(3): 600-614. [44] Pace M, Williams J, Kurioka A, et al. Histone deacetylase inhibitors enhance CD4 T cell susceptibility to NK cell killing but reduce NK cell function[J]. PLoS Pathog, 2016, 12(8): e1005782. [45] Folkerts J, Redegeld F, Folkerts G, et al. Butyrate inhibits human mast cell activation via epigenetic regulation of FcεRI-mediated signaling[J]. Allergy, 2020, 75(8): 1966-1978. |
[1] | Xu Jianke, Liu Ning, Han Miao, Zhang Hongyang, Han Xinsheng. Analysis of the relationship between non-high-density lipoprotein cholesterol and arterial plaque characteristic in a cohort of ischemic stroke patients [J]. Journal of Capital Medical University, 2023, 44(1): 49-53. |
[2] | Qin Linhui, Li Ning, Yang Yu, Yang Yong, Ren Changhong. Limb remote ischemic perconditioning combined with remote ischemic postconditioning promotes neurogenesis in rat models of ischemic stroke [J]. Journal of Capital Medical University, 2023, 44(1): 54-61. |
[3] | Jiang Fucheng, Huang Jyumei, Feng Yuexian, Zhong Hongliang, Jia Jianwen, Yang Hongchao, Liu He, Liu Yang. The evaluation of the efficacy and prognosis of conscious sedation in endovascular treatment in acute ischemic stroke [J]. Journal of Capital Medical University, 2023, 44(1): 72-77. |
[4] | Li Sen, Guo Xuewen, Zhao Xin, Huang Anqi, Lin Jingge, Li Xingmao, Li Xiu, Du Yifeng, Zhao Yongmei, Bai Jie, Xia Zhangyong. Correlation between glycemic variability and neurological deterioration in patients with acute ischemic stroke and diabetes mellitus [J]. Journal of Capital Medical University, 2023, 44(1): 78-84. |
[5] | Gu Qiang, Yu Xiaojun, Zhang Jin. Analysis of clinical characteristics and prognosis of the very old and young old patients with mild ischemic stroke [J]. Journal of Capital Medical University, 2022, 43(3): 474-479. |
[6] | Zhao Wenbo, Ren Changhong, Li Sijie, Ma Hongrui, Ji Xunming. Research and application of a new technical system of hypoxic and ischemic conditioning for prevention and treatment of ischemic stroke——The Second Prize of 2020 National Science and Technology Progress [J]. Journal of Capital Medical University, 2022, 43(1): 1-5. |
[7] | Wang Xuan, Ma Chongyang, Zhang Yawen, Cheng Hongfa, Zhang Qiuxia. A network pharmacology approach to uncover the molecular mechanisms of Houshiheisan for treatment of ischemic stroke [J]. Journal of Capital Medical University, 2021, 42(1): 43-52. |
[8] | Shan Yi, Li Jing, Xu Xiaoyin. Functional and molecular imaging of ischemic stroke——Professor Lu Jie [J]. Journal of Capital Medical University, 2020, 41(5): 788-794. |
[9] | Wang Min, Li Ying, Wang Xiangdong, Zhang Luo. Expression and role of IL-23 in chronic rhinosinusitis [J]. Journal of Capital Medical University, 2020, 41(2): 178-182. |
[10] | Duan Nan, Huang Chenwei, Pang Lu, Li Haixia. Glycated albumin regulates renal injury-associated molecules and Toll-like receptor signaling pathway and the intervention effect of oleanolic acid [J]. Journal of Capital Medical University, 2019, 40(4): 609-614. |
[11] | Gong Xiaoli, Liu Mengru, Wang Le, Liu Yang, Zhang Ting, Sun Ying, Wang Xiaomin. Role of α-synuclein in microglia inflammation and phagocytosis [J]. Journal of Capital Medical University, 2018, 39(5): 693-698. |
[12] | Yang Lin, Tian Lei, Zhou Xuan, Yang Le, Li Liying. Separation, purification and identification of mouse bone marrow neutrophils [J]. Journal of Capital Medical University, 2018, 39(5): 699-703. |
[13] | Guo Shuang, Li Qing, Wu Fang, Liu Jiabin, Li Yan, Du Xiangying, Lu Jie, Li Kuncheng. Application of dual-energy CT in differentiating hemorrhage from contrast medium extravasation after endovascualr treatment of acute ischemic stroke [J]. Journal of Capital Medical University, 2018, 39(2): 173-177. |
[14] | Zhou Yaqun, Ding Cuntao, Sun Xipeng, Li Jing, Hua Qi. Relationship between RDW, neutrophil/lymphocyte ratio and endothelial function in essential hypertensive patients [J]. Journal of Capital Medical University, 2018, 39(2): 292-298. |
[15] | Fan Xiaoting, Tian Lei, Yang Lin, Li Liying. Cannabinoid receptor 1 mediated the migration of human neutrophil-like cell line dHL60 [J]. Journal of Capital Medical University, 2017, 38(3): 417-422. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||