[1]Sharma D, Shastri S, Sharma P. Intrauterine growth restriction: antenatal and postnatal aspects[J]. Clin Med Insights Pediatr, 2016, 10: 67-83.
[2]Zur R L, Kingdom J C, Parks W T, et al. The placental basis of fetal growth restriction[J]. Obstet Gynecol Clin North Am, 2020, 47(1): 81-98.
[3]Dai Y, Zhang J, Liu R, et al. The role and mechanism of asymmetric dimethylarginine in fetal growth restriction via interference with endothelial function and angiogenesis[J]. J Assist Reprod Genet, 2020, 37(5): 1083-1095.
[4]Dai Y, Sang X B, Bai W P. N-acetylcysteine and hydroxychloroquine ameliorate ADMA-induced fetal growth restriction in mice via regulating oxidative stress and autophagy[J]. Reprod Sci, 2024, 31(3): 779-790.
[5]Tsikas D, Bollenbach A, Savvidou M D. Inverse correlation between maternal plasma asymmetric dimethylarginine (ADMA) and birthweight percentile in women with impaired placental perfusion: circulating ADMA as an no-independent indicator of fetal growth restriction?[J]. Amino Acids, 2018, 50(2): 341-351.
[6]Rana S, Lemoine E, Granger J P, et al. Preeclampsia: pathophysiology, challenges, and perspectives[J]. Circ Res, 2019, 124(7): 1094-1112.
[7]Camp O G, Bai D, Awonuga A, et al. Hypochlorous acid facilitates inducible nitric oxide synthase subunit dissociation: the link between heme destruction, disturbance of the zinc-tetrathiolate center, and the prevention by melatonin[J]. Nitric Oxide, 2022, 124: 32-38.
[8]Sultana Z, Qiao Y X, Maiti K, et al. Involvement of oxidative stress in placental dysfunction, the pathophysiology of fetal death and pregnancy disorders[J]. Reproduction, 2023, 166(2): R25-R38.
[9]Yoon H, Park S G, Kim H J, et al. Nicotinamide enhances osteoblast differentiation through activation of the mitochondrial antioxidant defense system[J]. Exp Mol Med, 2023, 55(7): 1531-1543.
[10]Fushima T, Sekimoto A, Oe Y, et al. Nicotinamide ameliorates a preeclampsia-like condition in mice with reduced uterine perfusion pressure[J]. Am J Physiol Renal Physiol, 2017, 312(2): F366-F372.
[11]Clark A J, Saade M C, Parikh S M. The significance of NAD+biosynthesis alterations in acute kidney injury[J]. Semin Nephrol, 2022, 42(3): 151287.
[12]Korokin M, Gureev V, Gudyrev O, et al. Erythropoietin mimetic peptide (pHBSP) corrects endothelial dysfunction in a rat model of preeclampsia[J]. Int J Mol Sci, 2020, 21(18): 6759.
[13]Lu S F, Lin Q F, Li Y, et al. Synthesis of Nomega-Nitro-L-arginine methyl ester modified reduced graphene oxide nanosheets and their protective action on experimental preeclampsia in mice[J]. J Photochem Photobiol B, 2019, 194: 183-187.
[14]Cordiano R, Di Gioacchino M, Mangifesta R, et al. Malondialdehyde as a potential oxidative stress marker for allergy-oriented diseases: an update[J]. Molecules, 2023, 28(16): 5979.
[15]Nie L X, Gao C C, Shen T J, et al. Dual-site fluorescent probe to monitor intracellular nitroxyl and GSH-GSSG oscillations[J]. Anal Chem, 2019, 91(7): 4451-4456.
[16]Jomova K, Alomar S Y, Alwasel S H, et al. Several lines of antioxidant defense against oxidative stress: antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants[J]. Arch Toxicol, 2024, 98(5): 1323-1367.
[17]Guo M, Chen K Y, Lv Z M, et al. Bcl-2 mediates coelomocytes apoptosis by suppressing cytochrome c release in Vibrio splendidus challenged Apostichopus japonicus[J]. Dev Comp Immunol, 2020, 103: 103533.
[18]Burton G J, Jauniaux E. Pathophysiology of placental-derived fetal growth restriction[J]. Am J Obstet Gynecol, 2018, 218(2S): S745-S761.
[19]Aramouni K, Assaf R, Shaito A, et al. Biochemical and cellular basis of oxidative stress: implications for disease onset[J]. J Cell Physiol, 2023, 238(9): 1951-1963.
Forman HJ, Zhang Hongqiao. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy[J]. Nat Rev Drug Discov, 2021, 20(9): 689-709.
[20]Chiarello D I, Abad C, Rojas D, et al. Oxidative stress: normal pregnancy versus preeclampsia[J]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866(2): 165354.
[21]Dymara-Konopka W, Laskowska M. The role of nitric oxide, ADMA, and homocysteine in the etiopathogenesis of preeclampsia-review[J]. Int J Mol Sci, 2019, 20(11): 2757.
[22]Steller J G, Alberts J R, Ronca A E. Oxidative stress as cause, consequence, or biomarker of altered female reproduction and development in the space environment[J]. Int J Mol Sci, 2018, 19(12): 3729.
[23]Sultana Z, Maiti K, Aitken J, et al. Oxidative stress, placental ageing-related pathologies and adverse pregnancy outcomes[J]. Am J Reprod Immunol, 2017, 77(5): e12653.
[24]Paradis E, Douillard H, Koutroumanis M, et al. Amyloid β peptide of Alzheimer's disease downregulates Bcl-2 and upregulates Bax expression in human neurons[J]. J Neurosci, 1996, 16: 7533-7539.
[25]Turunc Bayrakdar E, Uyanikgil Y, Kanit L, et al. Nico-tinamide treatment reduces the levels of oxidative stress, apoptosis, and PARP-1 activity in Aβ(1-42)-induced rat model of Alzheimer's disease[J]. Free Radic Res, 2014, 48(2): 146-158.
[26]Tan C Y R, Tan C L, Chin T, et al. Nicotinamide prevents UVB-and oxidative stress-induced photoaging in human primary keratinocytes[J]. J Invest Dermatol, 2022, 142(6): 1670-1681, e12.
[27]Tribble J R, Otmani A, Sun S S, et al. Nicotinamide provides neuroprotection in glaucoma by protecting against mitochondrial and metabolic dysfunction[J]. Redox Biol, 2021, 43: 101988.
|