[1] Burtscher J, Millet G P, Burtscher M. Does living at moderate altitudes in Austria affect mortality rates of various causes? An ecological study[J]. BMJ Open, 2021, 11(6): e048520. [2] Coulson S Z, Robertson C E, Mahalingam S, et al. Plasticity of non-shivering thermogenesis and brown adipose tissue in high-altitude deer mice[J]. J Exp Biol, 2021, 224(10): jeb242279. [3] 吴剑, 谷亚坤, 刘佳. 缺血/缺氧预适应的神经保护作用研究进展[J]. 首都医科大学学报, 2020, 41(4): 664-670. [4] Aebi M R, Bourdillon N, Noser P, et al. Cognitive impairment during combined normobaric vs. hypobaric and normoxic vs. hypoxic acute exposure[J]. Aerosp Med Hum Perform, 2020, 91(11): 845-851. [5] Steinman Y, Groen E, Frings-Dresen M H W. Exposure to hypoxia impairs helicopter pilots' awareness of environment[J]. Ergonomics, 2021, 64(11): 1481-1490. [6] Swiderska A, Coney A M, Alzahrani A A, et al. Mitochondrial succinate metabolism and reactive oxygen species are important but not essential for eliciting carotid body and ventilatory responses to hypoxia in the rat[J]. Antioxidants, 2021, 10(6): 840. [7] Berríos-Cárcamo P, Quezada M, Quintanilla M E, et al. Oxidative stress and neuroinflammation as a pivot in drug abuse. A focus on the therapeutic potential of antioxidant and anti-inflammatory agents and biomolecules[J]. Antioxidants, 2020, 9(9): 830. [8] Solleiro-Villavicencio H, Rivas-Arancibia S. Effect of chronic oxidative stress on neuroinflammatory response mediated by CD4+ T cells in neurodegenerative diseases[J]. Front Cell Neurosci, 2018, 12: 114. [9] Chi Z X, Chen S, Xu T, et al. Histone deacetylase 3 couples mitochondria to drive IL-1β-dependent inflammation by configuring fatty acid oxidation[J]. Mol Cell, 2020, 80(1): 43-58.e7. [10] Liao Y J, Cheng J B, Kong X X, et al. HDAC3 inhibition ameliorates ischemia/reperfusion-induced brain injury by regulating the microglial cGAS-STING pathway[J]. Theranostics, 2020, 10(21): 9644-9662. [11] Celora G L, Byrne H M, Zois C E, et al. Phenotypic variation modulates the growth dynamics and response to radiotherapy of solid tumours under normoxia and hypoxia[J]. J Theor Biol, 2021, 527: 110792. [12] Vanderborght B, De Muynck K, Lefere S, et al. Effect of isoform-specific HIF-1α and HIF-2α antisense oligonucleotides on tumorigenesis, inflammation and fibrosis in a hepatocellular carcinoma mouse model[J]. Oncotarget, 2020, 11(48): 4504-4520. [13] Yang M, Zhu M M, Song K, et al. VHL gene methylation contributes to excessive erythrocytosis in chronic mountain sickness rat model by upregulating the HIF-2α/EPO pathway[J]. Life Sci, 2021, 266: 118873. [14] Coimbra-Costa D, Garzón F, Alva N, et al. Intermittent hypobaric hypoxic preconditioning provides neuroprotection by increasing antioxidant activity, erythropoietin expression and preventing apoptosis and astrogliosis in the brain of adult rats exposed to acute severe hypoxia[J]. Int J Mol Sci, 2021, 22(10): 5272. [15] Albadari N, Deng S S, Li W. The transcriptional factors HIF-1 and HIF-2 and their novel inhibitors in cancer therapy[J]. Expert Opin Drug Discov, 2019, 14(7): 667-682. [16] McGettrick A F, O'Neill L A J. The role of HIF in immunity and inflammation[J]. Cell Metab, 2020, 32(4): 524-536. [17] Picca A, Calvani R, Coelho-Junior H J, et al. Mitochondrial dysfunction, oxidative stress, and neuroinflammation: intertwined roads to neurodegeneration[J]. Antioxidants, 2020, 9(8): 647. [18] Broide R S, Redwine J M, Aftahi N, et al. Distribution of histone deacetylases 1-11 in the rat brain[J]. J Mol Neurosci, 2007, 31(1): 47-58. [19] Donovan L L, Magnussen J H, Dyssegaard A, et al. Imaging HDACs in vivo: cross-validation of the [11C] Martinostat radioligand in the pig brain[J]. Mol Imaging Biol, 2020, 22(3): 569-577. [20] Hecklau K, Mueller S, Koch S P, et al. The effects of selective inhibition of histone deacetylase 1 and 3 in Huntington's disease mice[J]. Front Mol Neurosci, 2021, 14: 616886. [21] Sies H, Berndt C, Jones D P. Oxidative stress[J]. Annu Rev Biochem, 2017, 86: 715-748. [22] Cordaro M, Trovato Salinaro A, Siracusa R, et al. Hidrox© roles in neuroprotection: biochemical links between traumatic brain injury and Alzheimer's disease[J]. Antioxidants, 2021, 10(5): 818. [23] Najafi A, Pourfarzam M, Zadhoush F. Oxidant/antioxidant status in type-2 diabetes mellitus patients with metabolic syndrome[J]. J Res Med Sci, 2021, 26: 6. [24] Berríos-Cárcamo P, Quezada M, Quintanilla M E, et al. Oxidative stress and neuroinflammation as a pivot in drug abuse. A focus on the therapeutic potential of antioxidant and anti-inflammatory agents and biomolecules[J]. Antioxidants, 2020, 9(9): 830. |