[1] Saha S K A, Sadhukhan P, Sinha K, et al. Mangiferin attenuates oxidative stress induced renal cell damage through activation of PI3K induced Akt and Nrf-2 mediated signaling pathways[J]. Biochem Biophys Rep, 2016, 5: 313-327.
[2] Gavrilova S I, Alvarez A. Cerebrolysin in the therapy of mild cognitive impairment and dementia due to Alzheimer's disease: 30 years of clinical use[J]. Med Res Rev, 2021, 41(5): 2775-2803.
[3] Brainin M. Cerebrolysin: a multi-target drug for recovery after stroke[J]. Expert Rev Neurother, 2018, 18(8): 681-687.
[4] Jing D Q, Bai H, Yin S N. Renoprotective effects of emodin against diabetic nephropathy in rat models are mediated via PI3K/Akt/GSK-3β and Bax/caspase-3 signaling pathways[J]. Exp Ther Med, 2017, 14(5): 5163-5169.
[5] Uddin M N, Afrin R, Uddin M J, et al. Vanda roxburghii chloroform extract as a potential source of polyphenols with antioxidant and cholinesterase inhibitory activities: identification of a strong phenolic antioxidant[J]. BMC Complement Altern Med, 2015, 15: 195.
[6] Jing H Y, Wang F H, Gao X J. Lithium intoxication induced pyroptosis via ROS/NF-κB/NLRP3 inflammasome regulatory networks in kidney of mice[J]. Environ Toxicol, 2022, 37(4): 825-835.
[7] Liu X J, Wang Y Q, Shang S Q, et al. TMT induces apoptosis and necroptosis in mouse kidneys through oxidative stress-induced activation of the NLRP3 inflammasome[J]. Ecotoxicol Environ Saf, 2022, 230: 113167.
[8] Totsuka K, Ueta T, Uchida T, et al. Oxidative stress induces ferroptotic cell death in retinal pigment epithelial cells[J]. Exp Eye Res, 2019, 181: 316-324.
[9] Abdelmegeed M, Mukhopadhyay P. Understanding the roles and mechanisms of oxidative stress in diseases, tissue injury, and cell death in vivo and in vitro: Therapeutic possibilities of antioxidants[J]. Food Chem Toxicol, 2019,127:70-71.
[10] Morgan M J, Kim Y S, Liu Z. Lipid rafts and oxidative stress-induced cell death[J]. Antioxid Redox Signal, 2007, 9(9): 1471-1483.
[11] Kotora P, Šeršeň F, Filo J, et al. The scavenging of DPPH, galvinoxyl and ABTS radicals by imine analogs of resveratrol[J]. Molecules, 2016, 21(1): E127.
[12] Chen Y, Yang J, Huang Z, et al. Exosomal lnc-AFTR as a novel translation regulator of FAS ameliorates Staphylococcus aureus-induced mastitis[J]. Biofactors, 2022, 48(1): 148-163.
[13] Zhang Q R, Xue Y, Fu Y X, et al. Zinc deficiency aggravates oxidative stress leading to inflammation and fibrosis in lung of mice[J]. Biol Trace Elem Res, 2022, 200(9): 4045-4057.
[14] Chen Y, Jing H Y, Chen M Y, et al. Transcriptional profiling of exosomes derived from staphylococcus aureus-Infected bovine mammary epithelial cell line MAC-T by RNA-Seq analysis[J]. Oxid Med Cell Longev, 2021, 2021: 8460355.
[15] Li R, Jia Z Q, Trush M A. Defining ROS in biology and medicine[J]. React Oxyg Species (Apex), 2016, 1(1): 9-21.
[16] Lei P, Ayton S, Bush A I. The essential elements of Alzheimer's disease[J]. J Biol Chem, 2021, 296: 100105.
[17] Guan X, Wang Y J, Kai G Y, et al. Cerebrolysin ameliorates focal cerebral ischemia injury through neuroinflammatory inhibition via CREB/PGC-1α pathway[J]. Front Pharmacol, 2019, 10: 1245.
[18] Tramutola A, Lanzillotta C, Perluigi M, et al. Oxidative stress, protein modification and Alzheimer disease[J]. Brain Res Bull, 2017, 133: 88-96.
[19] Gavrilova S I, Alvarez A. Cerebrolysin in the therapy of mild cognitive impairment and dementia due to Alzheimer's disease: 30 years of clinical use[J]. Med Res Rev, 2021, 41(5): 2775-2803.
[20] Rockenstein E, Ubhi K, Trejo M, et al. CerebrolysinTM efficacy in a transgenic model of tauopathy: role in regulation of mitochondrial structure[J]. BMC Neurosci, 2014, 15: 90.
[21] Isaev N K, Stelmashook E V, Genrikhs E E. Role of nerve growth factor in plasticity of forebrain cholinergic neurons[J]. Biochemistry (Mosc), 2017, 82(3): 291-300.
[22] Xu C J, Wang J L, Jin W L. The emerging therapeutic role of NGF in alzheimer's disease[J]. Neurochem Res, 2016, 41(6): 1211-1218.
[23] Ubhi K, Rockenstein E, Vazquez-Roque R, et al. Cerebrolysin modulates pronerve growth factor/nerve growth factor ratio and ameliorates the cholinergic deficit in a transgenic model of Alzheimer's disease[J]. J Neurosci Res, 2013, 91(2): 167-177.
[24] Rockenstein E, Torrance M, Mante M, et al. Cerebrolysin decreases amyloid-beta production by regulating amyloid protein precursor maturation in a transgenic model of Alzheimer's disease[J]. J Neurosci Res, 2006, 83(7): 1252-1261.
[25] Wei Z H, He Q B, Wang H, et al. Meta-analysis: the efficacy of nootropic agent Cerebrolysin in the treatment of Alzheimer's disease[J]. J Neural Transm, 2007, 114(5): 629-634.
[26] Gauthier S, Proaño J V, Jia J P, et al. Cerebrolysin in mild-to-moderate Alzheimer's disease: a meta-analysis of randomized controlled clinical trials[J]. Dement Geriatr Cogn Disord, 2015, 39(5/6): 332-347.
[27] Zhu L, Liu Y J, Wu X L, et al. Cerebroprotein hydrolysate-I protects senescence-induced by D-galactose in PC12 cells and mice[J]. Food Sci Nutr, 2021, 9(7): 3722-3731.
[28] Rezatabar S, Karimian A, Rameshknia V, et al. RAS/MAPK signaling functions in oxidative stress, DNA damage response and cancer progression[J]. J Cell Physiol, 2019, 234(9): 14951-14965.
[29] Sabitha R, Nishi K M I, Gunasekaran V P, et al. p-Coumaric acid attenuates alcohol exposed hepatic injury through MAPKs, apoptosis and Nrf2 signaling in experimental models[J]. Chem Biol Interact, 2020, 321: 109044.
[30] Ma X, Zhang Y, Gou D, et al. Metabolic reprogramming of microglia enhances proinflammatory cytokine release through EphA2/p38 MAPK pathway in Alzheimer's disease[J]. J Alzheimers Dis, 2022, 88(2): 771-785.
[31] Yong H Y, Koh M S, Moon A. The p38 MAPK inhibitors for the treatment of inflammatory diseases and cancer[J]. Expert Opin Investig Drugs, 2009, 18(12): 1893-1905.
[32] Yasuda S, Sugiura H, Tanaka H, et al. p38 MAP kinase inhibitors as potential therapeutic drugs for neural diseases[J]. Cent Nerv Syst Agents Med Chem, 2011, 11(1): 45-59.
[33] Guan X, Wang Y J, Kai G Y, et al. Cerebrolysin ameliorates focal cerebral ischemia injury through neuroinflammatory inhibition via CREB/PGC-1α pathway[J]. Front Pharmacol, 2019, 10: 1245.
|