Journal of Capital Medical University ›› 2025, Vol. 46 ›› Issue (2): 216-227.doi: 10.3969/j.issn.1006-7795.2025.02.007
Previous Articles Next Articles
Li Qing1, Zhao Xiaowen2, Ren Jing1, Yu Miao1, Cui Hanfang1, Ding Fangyuan1, Liu Hao1, Li Qiong1, Wang Fan1, Li Qing1, Chen Xiyan1,Lu Chengbiao3, Li Shaomin4, Zhao Jianhua1*
Received:2024-11-20
Online:2025-04-21
Published:2025-04-14
Supported by:CLC Number:
Li Qing, Zhao Xiaowen, Ren Jing, Yu Miao, Cui Hanfang, Ding Fangyuan, Liu Hao, Li Qiong, Wang Fan, Li Qing, Chen Xiyan, Lu Chengbiao, Li Shaomin, Zhao Jianhua. The correlation of serum hypoxia-inducible factor-1α level with cerebral microbleeds and cognitive impairment[J]. Journal of Capital Medical University, 2025, 46(2): 216-227.
| [1]Kitagawa K. Blood pressure management for secondary stroke prevention[J]. Hypertens Res, 2022, 45(6): 936-943. [2]潘杰, 郑鲲鹏. 缺血性脑血管病并发脑微出血患者认知功能的分析[J]. 新疆医科大学学报, 2018, 41 (11): 1384-1387. [3]Zanon Zotin M C, Sveikata L, Viswanathan A, et al. Cerebral small vessel disease and vascular cognitive impairment: from diagnosis to management[J]. Curr Opin Neurol, 2021, 34(2): 246-257. [4]Chen H X, Ma D, Yue F X, et al. The potential role of hypoxia-inducible factor-1 in the progression and therapy of central nervous system diseases[J]. Curr Neuropharmacol, 2022, 20(9): 1651-1666. [5]Corrado C, Fontana S. Hypoxia and HIF signaling: one axis with divergent effects[J]. Int J Mol Sci, 2020, 21(16): 5611. [6]Kong L L, Ma Y Z, Wang Z Y, et al. Inhibition of hypoxia inducible factor 1 by YC-1 attenuates tissue plasminogen activator induced hemorrhagic transformation by suppressing HMGB1/TLR4/NF-κB mediated neutrophil infiltration in thromboembolic stroke rats[J]. Int Immunopharmacol, 2021, 94: 107507. [7]Long Y, Liu S Y, Wan J Y, et al. Brain targeted borneol-baicalin liposome improves blood-brain barrier integrity after cerebral ischemia-reperfusion injury via inhibiting HIF-1α/VEGF/eNOS/NO signal pathway[J]. Biomed Pharmacother, 2023, 160: 114240. [8]胡文立, 杨磊, 李譞婷, 等. 中国脑小血管病诊治专家共识2021[J]. 中国卒中杂志, 2021, 16(7): 716-726. [9]Lu J H, Li D, Li F, et al. Montreal cognitive assessment in detecting cognitive impairment in Chinese elderly individuals: a population-based study[J]. J Geriatr Psychiatry Neurol, 2011, 24(4): 184-190. [10]Duering M, Biessels G J, Brodtmann A, et al. Neuroimaging standards for research into small vessel disease-advances since 2013[J]. Lancet Neurol, 2023, 22(7): 602-618. [11]Puy L, Pasi M, Rodrigues M, et al. Cerebral microbleeds: from depiction to interpretation[J]. J Neurol Neurosurg Psychiatry, 2021: jnnp-2020. [12]Gregoire S M, Chaudhary U J, Brown M M, et al. The microbleed anatomical rating scale (Mars): reliability of a tool to map brain microbleeds[J]. Neurology, 2009, 73(21): 1759-1766. [13]Wardlaw J M, Benveniste H, Nedergaard M, et al. Perivascular spaces in the brain: anatomy, physiology and pathology[J]. Nat Rev Neurol, 2020, 16(3): 137-153. [14]Hussein A S, Shawqi M, Bahbah E I, et al. Do cerebral microbleeds increase the risk of dementia? A systematic review and meta-analysis[J]. IBRO Neurosci Rep, 2023, 14: 86-94. [15]Ding J, Sigurðsson S, Jónsson P V, et al. Space and location of cerebral microbleeds, cognitive decline, and dementia in the community[J]. Neurology, 2017, 88(22): 2089-2097. [16]Akoudad S, Wolters F J, Viswanathan A, et al. Association of cerebral microbleeds with cognitive decline and dementia[J]. JAMA Neurol, 2016, 73(8): 934-943. [17]Graff-Radford J, Lesnick T, Rabinstein A A, et al. Cerebral microbleed incidence, relationship to amyloid burden: The Mayo Clinic Study of Aging[J]. Neurology, 2020, 94(2): e190-e199. [18]Jung Y H, Jang H, Park S B, et al. Strictly lobar microbleeds reflect amyloid angiopathy regardless of cerebral and cerebellar compartments[J]. Stroke, 2020, 51(12): 3600-3607. [19]Kuo P Y, Tsai H H, Lee B C, et al. Differences in lobar microbleed topography in cerebral amyloid angiopathy and hypertensive arteriopathy[J]. Sci Rep, 2024, 14(1): 3774. [20]Incontri D, Marchina S, Andreev A, et al. Etiology of primary cerebellar intracerebral hemorrhage based on topographic localization[J]. Stroke, 2023, 54(12): 3074-3080. [21]Yang R, Li J, Qin Y Y, et al. A bibliometric analysis of cerebral microbleeds and cognitive impairment[J]. Brain Cogn, 2023, 169: 105999. [22]Patel V, Edison P. Cardiometabolic risk factors and neurodegeneration: a review of the mechanisms underlying diabetes, obesity and hypertension in Alzheimers disease[J]. J Neurol Neurosurg Psychiatry, 2024, 95(6): 581-589. [23]Cianchetti F A, Kim D H, Dimiduk S, et al. Stimulus-evoked calcium transients in somatosensory cortex are temporarily inhibited by a nearby microhemorrhage[J]. PLoS One, 2013, 8(5): e65663. [24]Ahn S J, Anrather J, Nishimura N, et al. Diverse inflammatory response after cerebral microbleeds includes coordinated microglial migration and proliferation[J]. Stroke, 2018, 49(7): 1719-1726. [25]Sudduth T L, Powell D K, Smith C D, et al. Induction of hyperhomocysteinemia models vascular dementia by induction of cerebral microhemorrhages and neuroinflammation[J]. J Cereb Blood Flow Metab, 2013, 33(5): 708-715. [26]He X F, Lan Y, Zhang Q, et al. Deferoxamine inhibits microglial activation, attenuates blood-brain barrier disruption, rescues dendritic damage, and improves spatial memory in a mouse model of microhemorrhages[J]. J Neurochem, 2016, 138(3): 436-447. [27]Tschoe C, Bushnell C D, Duncan P W, et al. Neuroinflammation after intracerebral hemorrhage and potential therapeutic targets[J]. J Stroke, 2020, 22(1): 29-46. [28]Nannoni S, Ohlmeier L, Brown R B, et al. Cognitive impact of cerebral microbleeds in patients with symptomatic small vessel disease[J]. Int J Stroke, 2022, 17(4): 415-424. [29]Wang H L, Zhang C L, Qiu Y M, et al. Dysfunction of the blood-brain barrier in cerebral microbleeds: from bedside to bench[J]. Aging Dis, 2021, 12(8): 1898-1919. [30]Pase M P, Pinheiro A, Rowsthorn E, et al. MRI visible perivascular spaces and the risk of incident mild cognitive impairment in a community sample[J]. J Alzheimers Dis, 2023, 96(1): 103-112. [31]Arba F, Quinn T J, Hankey G J, et al. Enlarged perivascular spaces and cognitive impairment after stroke and transient ischemic attack[J]. Int J Stroke, 2018, 13(1): 47-56. [32]Perosa V, Oltmer J, Munting L P, et al. Perivascular space dilation is associated with vascular amyloid-β accumulation in the overlying cortex[J]. Acta Neuropathol, 2022, 143(3): 331-348. [33]Riba-Llena I, Jiménez-Balado J, Castaé X, et al. Arterial stiffness is associated with basal ganglia enlarged perivascular spaces and cerebral small vessel disease load[J]. Stroke, 2018, 49(5): 1279-1281. [34]Yin C L, Ma Y J. The regulatory mechanism of hypoxia-inducible factor 1 and its clinical significance[J]. Curr Mol Pharmacol, 2024, 17: e18761429266116. [35]Qian Y, Li X, Fan R F, et al. MicroRNA-31 inhibits traumatic brain injury-triggered neuronal cell apoptosis by regulating hypoxia-inducible factor-1A/vascular endothelial growth factor A axis[J]. Neuroreport, 2022, 33(1): 1-12. [36]Yuan D, Guan S X, Wang Z, et al. HIF-1α aggravated traumatic brain injury by NLRP3 inflammasome-mediated pyroptosis and activation of microglia[J]. J Chem Neuroanat, 2021, 116: 101994. [37]Tsao C C, Baumann J, Huang S F, et al. Pericyte hypoxia-inducible factor-1 (HIF-1) drives blood-brain barrier disruption and impacts acute ischemic stroke outcome[J]. Angiogenesis, 2021, 24(4): 823-842. [38]Lei L, Feng J, Wu G, et al. HIF-1α causes LCMT1/PP2A deficiency and mediates Tau hyperphosphorylation and cognitive dysfunction during chronic hypoxia[J]. Int J Mol Sci, 2022, 23(24): 16140. [39]Alexander C, Li T, Hattori Y, et al. Hypoxia inducible factor-1α binds and activates γ-secretase for Aβ production under hypoxia and cerebral hypoperfusion[J]. Mol Psychiatry, 2022, 27(10): 4264-4273. [40]Li J, Tao T, Xu J, et al. HIF-1α attenuates neuronal apoptosis by upregulating EPO expression following cerebral ischemia-reperfusion injury in a rat MCAO model[J]. Int J Mol Med, 2020, 45(4): 1027-1036. [41]Mojsilovic-Petrovic J, Callaghan D, Cui H, et al. Hypoxia-inducible factor-1 (HIF-1) is involved in the regulation of hypoxia-stimulated expression of monocyte chemoattractant protein-1 (MCP-1/CCL2) and MCP-5 (Ccl12) in astrocytes[J]. J Neuroinflammation, 2007, 4: 12. [42]Hao H F, Hou Y X, Li A C, et al. HIF-1α promotes astrocytic production of macrophage migration inhibitory factor following spinal cord injury[J]. CNS Neurosci Ther, 2023, 29(12): 3802-3814. [43]Page S, Raut S, Al-Ahmad A. Oxygen-glucose deprivation/reoxygenation-induced barrier disruption at the human blood-brain barrier is partially mediated through the HIF-1 pathway[J]. Neuromolecular Med, 2019, 21(4): 414-431. [44]He Q Y, Ma Y Z, Liu J, et al. Biological functions and regulatory mechanisms of hypoxia-nducible factor-1α in ischemic stroke[J]. Front Immunol, 2021, 12: 801985. [45]王瑾. 脑小血管病患者血清VEGF水平与脑白质高信号和非痴呆型认知功能障碍的相关性研究[D]. 新乡: 新乡医学院, 2022. [46]Zhao J H, Wang X T, Yu M, et al. The relevance of serum macrophage migration inhibitory factor level and executive function in patients with white matter hyperintensity in cerebral small vessel disease[J]. Brain Sci, 2023, 13(4): 616. [47]Zhao J H, Yang F L, Peng X, et al. Is matrix metalloproteinase-9 associated with post-stroke cognitive impairment or dementia?[J]. J Integr Neurosci, 2022, 21(6): 160. [48]Che P, Zhang J, Yu M Q, et al. DL-3-n-butylphthalide promotes synaptic plasticity by activating the Akt/ERK signaling pathway and reduces the blood-brain barrier leakage by inhibiting the HIF-1α/MMP signaling pathway in vascular dementia model mice[J]. CNS Neurosci Ther, 2023, 29(5): 1392-1404. [49]Han C Y, Zhai L P, Shen H P, et al. Advanced glycation end-products (AGEs) promote endothelial cell pyroptosis under cerebral ischemia and hypoxia via HIF-1α-RAGE-NLRP3[J]. Mol Neurobiol, 2023, 60(5): 2355-2366. |
| [1] | Guo Yu, Chen Weiguan, Zhou Sanlian, Tang Liqiao, Sun Wangyan, Zhang Dongmei, Lu Hongjian. Correlation between serum glycoprotein non-metastatic melanoma protein B levels and disease severity and prognosis in patients with acute ischemic stroke [J]. Journal of Capital Medical University, 2025, 46(4): 702-709. |
| [2] | Jiang Chenguan, Liu Yan, Yang Zhou, Li Bingxin, Zhang Jianguo, Shi Lin. Research progress on the long-term effects of subthalamic nucleus deep brain stimulation on non-motor symptoms in Parkinson's disease [J]. Journal of Capital Medical University, 2025, 46(4): 733-741. |
| [3] | Huo Bixiu, Jia Hongxiao, , Ning Yanzhe, Zheng Sisi. Abnormal top-down and bottom-up attention patterns in patients suffering from coronary heart disease with heart qi deficiency syndrome [J]. Journal of Capital Medical University, 2025, 46(3): 455-462. |
| [4] | Xian Shulian, Jia Hongxiao, Li Xue, Wang Di, Song Mingkang, Yin Dongqing, Jiang Hairong. A study on the distribution patterns of traditional Chinese medicine syndrome types in antipsychotic-induced metabolic syndrome [J]. Journal of Capital Medical University, 2025, 46(3): 463-470. |
| [5] | Li Xue, Jia Hongxiao, Zhu Hong, Feng Zhengtian, Zheng Sisi, Wu Ziyao, Duan Yuhang. Research on core syndrome of generalized anxiety disorder in traditional Chinese medicine: based on network analysis method [J]. Journal of Capital Medical University, 2025, 46(3): 471-478. |
| [6] | Yin Dongqing, Jia Hongxiao, , Li Xue, Zheng Sisi, Ning Yanzhe. Qingre Jiedu recipe in the treatment of bipolar depression with the syndrome of internal stagnation of fire-heat: a randomized double-blind controlled trial [J]. Journal of Capital Medical University, 2025, 46(3): 479-486. |
| [7] | Li Yue, Chen Junyu, Chang Chunlei, Zhang Jing. Investigation on the mechanism of Huatan Anshen Decoction to improve neuronal apoptosis based on NLRP3/IL-18/NF-κB pathway [J]. Journal of Capital Medical University, 2025, 46(3): 487-495. |
| [8] | Huo Bixiu, Jia Hongxiao, , Ning Yanzhe. Research progress of cognitive function decline in patients with coronary heart disease [J]. Journal of Capital Medical University, 2025, 46(3): 496-502. |
| [9] | Ren Qianwei, Zhou Siyi, Jin Xinyue, Guo Fuzhen, Guan Zhongjun. Analysis of stroke-related risk factors among urban community residents: A case-control study based on propensity score matching [J]. Journal of Capital Medical University, 2025, 46(3): 520-526. |
| [10] | Wang Yongjun, Liu Tao, Liu Ziyang, Xiong Yunyun, Jing Jing, Xie Xuewei, Li Zixiao. The applications of artificial intelligence in the field of cerebrovascular diseases [J]. Journal of Capital Medical University, 2025, 46(2): 177-183. |
| [11] | Qi Han, Dong Chengcheng, Liu Rui, Zhu Xuequan, Lin Xuzhou, Qin Yanshu, Yu Zibo, Wang Haining, Li Lei, Feng Yuan, Zhang Ling, Yan Fang. Transition of body mass index and metabolic syndrome in patients with major depressive disorder [J]. Journal of Capital Medical University, 2025, 46(2): 202-209. |
| [12] | Jing Jiao, Zhang Siyao, Liu Yanling, Wang Fen, Xiao Wei, Wang Zhenzhong. Effect of large artery atherosclerosis subtype on the efficacy of Ginkgo Diterpene Lactone Meglumine in acute ischemic stroke [J]. Journal of Capital Medical University, 2025, 46(2): 228-233. |
| [13] | Zi Xiaohui, Xia Xue, Li jing, Zhang Xiaoli, Zhou Quan, Wang Anxin, Wang Yilong. Advances in the application of antiplatelet therapy in intravenous thrombolysis for acute ischemic stroke patients [J]. Journal of Capital Medical University, 2025, 46(2): 234-242. |
| [14] | Wu Lin, Sun Junzhao, Han Chengchen, Nie Xingxing, Tian Yuhong, Pi Hongying. Observation of clinical effect of remote ischemic conditioning in patients with spontaneous intracerebral hemorrhage [J]. Journal of Capital Medical University, 2025, 46(2): 356-362. |
| [15] | Dong Xiao, Zhang Wanying, Ji Xunming, Wu Chuanjie. Overview of the “2024 Guideline for the Primary Prevention of Stroke: A Guideline from the American Heart Association(AHA)/American Stroke Association(ASA)” [J]. Journal of Capital Medical University, 2025, 46(1): 1-5. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||