Journal of Capital Medical University ›› 2013, Vol. 34 ›› Issue (1): 75-79.doi: 10.3969/j.issn.1006-7795.2013.01.014
Previous Articles Next Articles
LI Sen, LIU Kejian, ZHAO Yongmei
Received:
2012-10-09
Online:
2013-02-21
Published:
2013-02-25
Supported by:
This study was supported by National Natural Science Foundation of China (81171242),Natural Science Foundation of Beijing (7122036),Public Foundation of Beijing Brain Diseases Key Laboratory(2012NZDJ03).
CLC Number:
LI Sen, LIU Kejian, ZHAO Yongmei. Recent progress in studies on the role of Zn2+ in cerebral ischemia[J]. Journal of Capital Medical University, 2013, 34(1): 75-79.
[1] Sensi S L, Paoletti P, Bush A I, et al. Zinc in the physiology and pathology of the CNS [J]. Nat Rev Neurosci, 2009, 10(11):780-791.[2] Bitanihirwe B K, Cunningham M G. Zinc: the brain’s dark horse [J]. Synapse, 2009, 63(11):1029-1049.[3] Ohana E, Segal D, Palty R, et al. A sodium zinc exchange mechanism is mediating extrusion of zinc in mammalian cells [J]. J Biol Chem, 2004, 279(6):4278-4284.[4] Aguilar-Alonso P, Martinez-Fong D, Pazos-Salazar N G, et al. The increase in zinc levels and upregulation of zinc transporters are mediated by nitric oxide in the cerebral cortex after transient ischemia in the rat [J]. Brain Res, 2008, 1200:89-98.[5] Lee S J, Koh J Y. Roles of zinc and metallothionein-3 in oxidative stress-induced lysosomal dysfunction, cell death, and autophagy in neurons and astrocytes [J]. Mol Brain, 2010, 3(1):30.[6] Sensi S L, Paoletti P, Koh J Y, et al. The neurophysiology and pathology of brain zinc [J]. J Neurosci, 2011, 31(45):16076-16085.[7] Sorensen J C, Mattsson B, Andreasen A, et al. Rapid disappearance of zinc positive terminals in focal brain ischemia[J]. Brain Res, 1989, 812(1-2):265-269.[8] Kitamura Y, Iida Y, Abe J, et al. In vivo measurement of presynaptic Zn2+ release during forebrain ischemia in rats [J]. Biol Pharm Bull, 2006, 29(4):821-823.[9] Lauritzen M, Dreier J P, Fabricius M, et al. Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury [J]. J Cereb Blood Flow Metab, 2011, 31(1): 17-35.[10] Carter R E, Aiba I, Dietz R M, et al. Spreading depression and related events are significant sources of neuronal Zn2+ release and accumulation [J]. J Cereb Blood Flow Metab, 2011, 31(4):1073-1084.[11] Shuttleworth C W, Weiss J H. Zinc: new clues to diverse roles in brain ischemia [J]. Trends Pharmacol Sci, 2011, 32(8):480-486.[12] Frederickson C J, Giblin L J, Krezel A, et al. Concentrations of extracellular free zinc (pZn)e in the central nervous system during simple anesthetization, ischemia and reperfusion [J]. Exp Neurol, 2006, 198(2):285-293.[13] Sensi S L, Ton-That D, Sullivan P G, et al. Modulation of mitochondrial function by endogenous Zn2+ pools [J]. Proc Natl Acad Sci U S A, 2003, 100(10):6157-6162.[14] Lee J Y, Kim J H, Palmiter R D, et al. Zinc released from metallothionein-iii may contribute to hippocampal CA1 and thalamic neuronal death following acute brain injury [J]. Exp Neurol, 2003, 184(1): 337-347.[15] Malaiyandi L M, Dineley K E, Reynolds I J. Divergent consequences arise from metallothionein overexpression in astrocytes: zinc buffering and oxidant-induced zinc release [J]. Glia, 2004, 45(4):346-353.[16] Koumura A, Hamanaka J, Shimazawa M, et al. Metallothionein-III knockout mice aggravates the neuronal damage after transient focal cerebral ischemia [J]. Brain Res, 2009, 1292:148-154.[17] Aras M A, Hara H, Hartnett K A, et al. Protein kinase C regulation of neuronal zinc signaling mediates survival during preconditioning [J]. J Neurochem, 2009, 110(1):106-117.[18] Gazaryan I G, Krasinskaya I P, Kristal B S, et al. Zinc irreversibly damages major enzymes of energy production and antioxidant defense prior to mitochondrial permeability transition [J]. J Biol Chem, 2007, 282(33):24373-24380.[19] Galasso S L, Dyck R H. The role of zinc in cerebral ischemia [J]. Mol Med, 2007, 13(7-8):380-387.[20] Dineley K E, Richards L L, Votyakova T V, et al. Zinc causes loss of membrane potential and elevates reactive oxygen species in rat brain mitochondria [J]. Mitochondrion, 2005, 5(1): 55-65.[21] Bonanni L, Chachar M, Jover-Mengual T, et al. Zinc-dependent multi-conductance channel activity in mitochondria isolated from ischemic brain [J]. J Neurosci, 2006, 26(25): 6851-6862.[22] Medvedeva Y V, Lin B, Shuttleworth C W, et al. Intracellular Zn2+ accumulation contributes to synaptic failure, mitochondrial depolarization, and cell death in an acute slice oxygen-glucose deprivation model of ischemia [J]. J Neurosci, 2009, 29(4):1105-1114.[23] Aimo L, Cherr G N, Oteiza P I,et al. Low extracellular zinc increases neuronal oxidant production through NADPH oxidase and nitric oxide synthase activation [J]. Free Radic Biol Med, 2010, 48(12):1577-1587.[24] Calderone A, Jover T, Noh K M, et al. Ischemic insults derepress the gene silencer REST in neurons destined to die [J]. J Neurosci, 2003, 23(6):2112-2121.[25] Lapucci A, Pittelli M, Rapizzi E, et al. Poly(ADP-ribose) polymerase-1 is a nuclear epigenetic regulator of mitochondrial DNA repair and transcription [J]. Mol Pharmacol, 2011, 79(6): 932-940.[26] Kim Y H, Koh J Y. The role of NADPH oxidase and neuronal nitric oxide synthase in zinc-induced poly(ADP-ribose) polymerase activation and cell death in cortical culture[J]. Exp Neurol, 2002, 177(2), 407-418.[27] Yu S W, Andrabi S A, Wang H, et al. Apoptosis-inducing factor mediates poly(ADP-ribose) (PAR) polymer-induced cell death[J]. Proc Natl Acad Sci U S A, 2006, 103(48):18314-18319.[28] Andrabi S A, Kim N S, Yu S W, et al. Poly(ADP-ribose) (PAR) polymer is a death signal [J]. Proc Natl Acad Sci U S A, 2006, 103(48):18308-18313.[29] Lee J Y, Kim Y H, Koh J Y. Protection by pyruvate against transient forebrain ischemia in rats [J]. J Neurosci, 2001, 21(20):RC171.[30] Alano C C, Garnier P, Ying W, et al. NAD+ depletion is necessary and sufficient for poly(ADP-ribose) polymerase-1-mediated neuronal death [J]. J Neurosci, 2010, 30(8):2967-2978.[31] Sheline C T, Behrens M M, Choi D W. Zinc-induced cortical neuronal death: contribution of energy failure attributable to loss of NAD(+) and inhibition of glycolysis [J]. J Neurosci, 2000, 20(9):3139-3146.[32] Cai A L, Zipfel G J, Sheline C T. Zinc neurotoxicity is dependent on intracellular NAD levels and the sirtuin pathway [J]. Eur. J Neurosci, 2006, 24(8):2169-2176.[33] Suh S W, Aoyama K, Alano C C, et al. Zinc inhibits astrocyte glutamate uptake by activation of poly(ADP-ribose) polymerase-1 [J]. Mol Med, 2007, 13(7-8): 344-349.[34] Kauppinen T M, Higashi Y, Suh S W, et al. Zinc triggers microglial activation [J]. J Neurosci, 2008, 28(22):5827-5835.[35] Irving E A, Bamford M. Role of mitogen- and stress-activated kinases in ischemic injury [J]. J Cereb Blood Flow Metab, 2002, 22(6):631-647.[36] Redman P T, Hartnett K A, Aras M A, et al. Regulation of apoptotic potassium currents by coordinated zinc-dependent signaling [J]. J Physiol, 2009, 587(Pt 18):4393-4404.[37] Chu C T, Levinthal D J, Kulich S M, et al. Oxidative neuronal injury. The dark side of ERK1 /2 [J]. Eur J Biochem, 2004, 271(11): 2060-2066.[38] He K, Aizenman E. ERK signaling leads to mitochondrial dysfunction in extracellular zinc-induced neurotoxicity [J]. J Neurochem, 2010, 114(2): 452-461.[39] 李森, 闫峰, 闫颖, 等.大鼠局灶性脑缺血损伤后半暗带区锌离子的变化 [J]. 中国神经免疫学和神经病学杂志, 2012, 19(3): 175-178.[40] Lee S B, Bae I H, Bae Y S, et al. Link between mitochondria and NADPH oxidase 1 isozyme for the sustained production of reactive oxygen species and cell death [J]. J Biol Chem, 2006, 281(47): 36228-36235.[41] Jia Y, Jeng J M, Sensi S L, et al. Zn2+ currents are mediated by calcium-permeable AMPA/kainate channels in cultured murine hippocampal neurons [J]. J Physiol, 2002, 543(Pt1): 35-48.[42] Gower-Winter S D, Levenson C W. Zinc in the central nervous system: From molecules to behavior [J]. Biofactors, 2012, 38(3):186-193. |
[1] | Fang Yalan, Yang Nan, Zhao Yongmei, Huang Yuyou, Li Jincheng, Duan Yunxia, Gao Li, Luo Yumin. Effects of chrysophanol on HIF-1α and VEGF expressions in mice with focal cerebral ischemia/reperfusion injury [J]. Journal of Capital Medical University, 2021, 42(2): 219-224. |
[2] | Yang Nan, Ding Mao, Yan Feng, Shi Wenjuan, Huang Yuyou, Zhao Yongmei. Effect of remote ischemic preconditioning on PERK/p-eIF2α pathway and autophagy in the penumbra of rats with focal cerebral ischemia/reperfusion injury [J]. Journal of Capital Medical University, 2021, 42(2): 225-231. |
[3] | Ding Mao, Yang Nan, Huang Yuyou, Shi Wenjuan, Yan Feng, Zhao Yongmei, Liu Kejian. Effects of mitochondrial reactive oxygen species inhibitor R(+)-pramipexole on JAK2-STAT3 signaling pathway and pro-inflammatory factor TNF-α in rats with cerebral ischemia/reperfusion injury [J]. Journal of Capital Medical University, 2021, 42(2): 232-238. |
[4] | Yang Nan, Ding Mao, Huang Yuyou, Fang Yalan, Shi Wenjuan, Zhao Yongmei. Effects of nitric oxide on nerve growth factor and brain derived neurotrophic factor expressions in rats with focal cerebral ischemia/reperfusion injury [J]. Journal of Capital Medical University, 2020, 41(6): 908-913. |
[5] | Wang Mingyang, Sun Zhengyu, Zhang Li, Li Yali, Li Lin, Zhang Lan. Effects of cornel iridoid glycoside on mitochondria damage in rats with cerebral ischemia reperfusion injury [J]. Journal of Capital Medical University, 2020, 41(3): 385-390. |
[6] | Ma Denglei, Zhang Xu, Zhang Li, Li Yali, Zhang Lan, Li Lin. Effects of cornel iridoid glycoside on cognitive function and tau phosphorylation in rats with traumatic brain injury [J]. Journal of Capital Medical University, 2020, 41(3): 397-402. |
[7] | Hu Yue, Song Haozhe, Chen Jiashu, Liang Yuting, Zhao Anqi, Wang Murong, Li Lizhuo. Correlation between coagulation and progressive hemorrhagic injury in elderly patients with acute traumatic brain injury [J]. Journal of Capital Medical University, 2020, 41(2): 302-306. |
[8] | Fang Yalan, Huang Yuyou, Zhao Yongmei, Shi Wenjuan, Li Jincheng, Duan Yunxia, Gao Li, Luo Yumin. Effects of chrysophanol on Beclin1 and Bax protein expressions in mice with focal cerebral ischemia/reperfusion injury [J]. Journal of Capital Medical University, 2019, 40(5): 703-708. |
[9] | Li Kangning, Fan Yongping, Wang Lei. Study on traditional Chinese medicine treatment based on syndrome differentiation and prescription regularity of concussion practiced by Prof. Fan Yongping [J]. Journal of Capital Medical University, 2019, 40(2): 292-299. |
[10] | Li Lizhuo, He Songbai, Zhaoge Jingwa. Clinical analysis of acute isolated traumatic brain injury-associated coagulopathy in middle aged and older populations [J]. Journal of Capital Medical University, 2018, 39(4): 537-540. |
[11] | Shi Wenjuan, Zhao Yongmei, Qi Zhifeng, Huang Yuyou, Fang Yalan, Liu Kejian. Moderate regulatory effect of normobaric hyperoxia on nuclear factor-κB in cerebral ischemia-reperfusion injured rats [J]. Journal of Capital Medical University, 2018, 39(3): 349-354. |
[12] | Huang Yuyou, Fang Yalan, Shi Wenjuan, Liu Kejian, Zhao Yongmei. Effects of nitric oxide synthase inhibitor Nω-nitro-L-arginine methyl ester on the expressions of autophagy in the penumbra of rats following focal cerebral ischemia/reperfusion [J]. Journal of Capital Medical University, 2018, 39(3): 355-359. |
[13] | Fang Yalan, Huang Yuyou, Zhao Yongmei, Li Jincheng, Duan Yunxia, Gao Li, Luo Yumin. Effects of chrysophanol on the expressions of p-CREB, BDNF and p-STAT3 in the brain of focal cerebral ischemia/reperfusion mice [J]. Journal of Capital Medical University, 2018, 39(3): 360-365. |
[14] | Fang Yalan, Yin Jie, Liu Kejian, Zhao Yongmei. Interaction between free radicals and zinc following cerebral ischemia/reperfusion injury [J]. Journal of Capital Medical University, 2018, 39(3): 373-377. |
[15] | Lu Yue, Liu Jianhong, Zhao Hui, Chang Jiahui, Xiang Yangyang, Zhang Qiuxia. Influence of Houshiheisan on the expression of axon guidance factor and Rho GTPases [J]. Journal of Capital Medical University, 2017, 38(6): 891-896. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||