Journal of Capital Medical University ›› 2013, Vol. 34 ›› Issue (1): 80-85.doi: 10.3969/j.issn.1006-7795.2013.01.015
Previous Articles Next Articles
ZHAO Haiping, LUO Yumin
Received:2012-10-09
Online:2013-02-21
Published:2013-02-25
Supported by:This study was supported by National Natural Science Foundation of China (81201028, 81071058, 30770743).
CLC Number:
ZHAO Haiping, LUO Yumin. Progress in studies of MicroRNA-144-associated diseases and related mechanism[J]. Journal of Capital Medical University, 2013, 34(1): 80-85.
| [1] Ghelani H S, Rachchh M A, Gokani R H. MicroRNAs as newer therapeutic targets: A big hope from a tiny player[J]. J Pharmacol Pharmacother, 2012, 3(3): 217-227.[2] Zen K, Zhang C Y. Circulating microRNAs: a novel class of biomarkers to diagnose and monitor human cancers[J]. Med Res Rev, 2012, 32(2):326-348.[3] Rüegger S, Groβhans H. MicroRNA turnover: when, how, and why. Trends Biochem Sci[J]. Trends Biochem Sci, 2012, 37(10):436-446.[4] Bianchi N, Zuccato C, Finotti A, et al. Involvement of miRNA in erythroid differentiation[J]. Epigenomics, 2012, 4(1):51-65.[5] Lin He, Hannon G J. MicroRNAs: small RNAs with a big role in gene regulation[J]. Nature Reviews Genetics, 2004, 5(7): 522-531.[6] Dore L C, Amigo J D, Dos Santos C O, et al. A GATA-1-regulated microRNA locus essential for erythropoiesis[J]. Proc Natl Acad Sci USA, 2008, 105(9):3333-3338.[7] Papapetrou E P, Korkola J E, Sadelain M. A genetic strategy for single and combinatorial analysis of miRNA function in mammalian hematopoietic stem cells[J]. Stem Cells, 2010, 28(2):287-296.[8] Du T T, Fu Y F, Dong M, et al. Experimental validation and complexity of miRNA-mRNA target interaction during zebrafish primitive erythropoiesis[J]. Biochem Biophys Res Commun, 2009, 381(4):688-693.[9] Fu Y F, Du T T, Dong M, et al. Mir-144 selectively regulates embryonic alpha-hemoglobin synthesis during primitive erythropoiesis[J]. Blood, 2009, 113(6):1340-1349.[10] Rasmussen K D, Simmini S, Abreu-Goodger C, et al. The miR-144/451 locus is required for erythroid homeostasis[J]. J Exp Med, 2010, 207(7):1351-1358.[11] Yu D, dos Santos C O, Zhao G, et al. miR-451 protects against erythroid oxidant stress by repressing 14-3-3zeta[J]. Genes Dev, 2010, 24(15):1620-1633.[12] Sangokoya C, Telen M J, Chi J T. microRNA miR-144 modulates oxidative stress tolerance and associates with anemia severity in sickle cell disease[J]. Blood, 2010, 116(20):4338-4348.[13] Rasmussen K D, O'Carroll D. The miR-144/451eGFP allele, a novel tool for resolving the erythroid potential of hematopoietic precursors[J]. Blood, 2011, 118(11):2988-2992.[14] Leuenberger N, Jan N, Pradervand S, et al. Circulating microRNAs as long-term biomarkers for the detection of erythropoiesis-stimulating agent abuse[J]. Drug Test Anal, 2011, 3(11-12):771-776.[15] Liu L, Wang S, Chen R, et al. Myc induced miR-144/451 contributes to the acquired imatinib resistance in chronic myelogenous leukemia cell K562[J]. Biochem Biophys Res Commun, 2012, 425(2):368-373.[16] Girardi C, De Pittà C, Casara S, et al. Analysis of miRNA and mRNA expression profiles highlights alterations in ionizing radiation response of human lymphocytes under modeled microgravity[J]. PLoS One, 2012, 7(2):e31293.[17] Machová Poláková K, Lopotová T, Klamová H, et al. Expression patterns of microRNAs associated with CML phases and their disease related targets[J]. Mol Cancer, 2011, 10:41.[18] Whitman S P, Maharry K, Radmacher M D, et al. FLT3 internal tandem duplication associates with adverse outcome and gene- and microRNA-expression signatures in patients 60 years of age or older with primary cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study[J]. Blood, 2010, 116(18):3622-3626.[19] 赵晓鸿,赫捷.微小RNA与肿瘤[J].中华肿瘤防治杂志,2010,17(7):547-550.[20] Wang W, Peng B, Wang D, et al. Human tumor microRNA signatures derived from large-scale oligonucleotide microarray datasets[J]. Int J Cancer,2011, 129(7):1624-1634.[21] Wang P, Fu T, Wang X, et al. Primary, study of miRNA expression patterns in laryngeal carcinoma by microarra[J]. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi, 2010, 24(12):535-538.[22] Guled M, Lahti L, Lindholm P M, et al. CDKN2A, NF2, and JUN are dysregulated among other genes by miRNAs in malignant mesothelioma -A miRNA microarray analysis[J]. Genes Chromosomes Cancer, 2009, 48(7):615-623.[23] Rossing M, Borup R, Henao R, et al. Down-regulation of microRNAs controlling tumourigenic factors in follicular thyroid carcinoma[J]. J Mol Endocrinol, 2012, 48(1):11-23.[24] 魏任雄, 蔡林, 谭金海, 等. 骨肉瘤miRNA基因的差异性表达[J]. 中华实验外科杂志, 2009, 26(5): 636-638.[25] Gaedcke J, Grade M, Camps J, et al. The rectal cancer microRNAome-microRNA expression in rectal cancer and matched normal mucosa[J]. Clin Cancer Res, 2012, 18(18):4919-4930.[26] Kalimutho M, Del Vecchio Blanco G, Di Cecilia S, et al. Differential expression of miR-144* as a novel fecal-based diagnostic marker for colorectal cancer[J]. J Gastroenterol, 2011, 46(12):1391-1402.[27] Sureban S M, May R, Mondalek F G, et al. Nanoparticle-based delivery of siDCAMKL-1 increases microRNA-144 and inhibits colorectal cancer tumor growth via a Notch-1 dependent mechanism[J]. J Nanobiotechnology, 2011, 9:40.[28] Lee D Y, Jeyapalan Z, Fang L, et al. Expression of versican 3'-untranslated region modulates endogenous microRNA functions[J]. PLoS One, 2010, 5(10):e13599.[29] 曹婷,杨丽君,崔红.微小RNA在神经系统及髓鞘发生的调节作用[J].首都医科大学学报,2012,33(3):414-418.[30] Zhang H Y, Zheng S J, Zhao J H, et al. MicroRNAs 144, 145, and 214 are down-regulated in primary neurons responding to sciatic nerve transection[J]. Brain Res, 2011, 1383:62-70.[31] Rau C S, Jeng J C, Jeng S F, et al. Entrapment neuropathy results in different microRNA expression patterns from denervation injury in rats[J]. BMC Musculoskelet Disord, 2010, 11:181.[32] An J, Choi K P, Wells C A, et al. Identifying co-regulating microRNA groups[J]. J Bioinform Comput Biol, 2010, 8(1):99-115.[33] Persengiev S, Kondova I, Otting N, et al. Genome-wide analysis of miRNA expression reveals a potential role for miR-144 in brain aging and spinocerebellar ataxia pathogenesis[J]. Neurobiol Aging, 2011, 32(12):2316.e17-27.[34] Gu H, Li H, Zhang L, et al. Diagnostic role of microRNA expression profile in the serum of pregnant women with fetuses with neural tube defects[J]. J Neurochem, 2012, 122(3):641-649.[35] Zhou R, Yuan P, Wang Y, et al. Evidence for selective microRNAs and their effectors as common long-term targets for the actions of mood stabilizers[J]. Neuropsychopharmacology, 2009, 34(6):1395-1405.[36] Dinan T G. MicroRNAs as a target for novel antipsychotics: a systematic review of an emerging field[J]. Int J Neuropsychopharmacol, 2010, 13(3):395-404.[37] 施翔翔, 来丹丹, 章佳颖, 等. 心脏发育相关的微小RNA差异表达[J]. 中华医学杂志, 2009, 89(20):90-96.[38] Wang X, Zhu H, Zhang X, et al. Loss of the miR-144/451 cluster impairs ischaemic preconditioning-mediated cardioprotection by targeting Rac-1[J]. Cardiovasc Res, 2012, 94(2):379-390.[39] Zhang X, Wang X, Zhu H, et al. Synergistic effects of the GATA-4-mediated miR-144/451 cluster in protection against simulated ischemia/reperfusion-induced cardiomyocyte death[J]. J Mol Cell Cardiol, 2010, 49(5):841-850.[40] Ovcharenko D, Kelnar K, Johnson C, et al. Genome-scale microRNA and small interfering RNA screens identify small RNA modulators of TRAIL-induced apoptosis pathway[J]. Cancer Res, 2007, 67(22):10782-10788.[41] Huang F, Huang XY, Yan DS, et al. MicroRNA-144 over-expression induced myocytes apoptosis[J]. Zhonghua Xin Xue Guan Bing Za Zhi, 2011, 39(4):353-357.[42] Wu J H, Gao Y, Ren A J, et al. Altered microRNA expression profiles in retinas with diabetic retinopathy[J]. Ophthalmic Res, 2012, 47(4):195-201.[43] Karolina D S, Armugam A, Tavintharan S, et al. MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus[J]. PLoS One, 2011, 6(8):e22839.[44] Xie T, Liang J, Guo R, et al. Comprehensive microRNA analysis in bleomycin-induced pulmonary fibrosis identifies multiple sites of molecular regulation[J]. Physiol Genomics, 2011, 43(9):479-487.[45] Liu Y, Wang X, Jiang J, et al. Modulation of T cell cytokine production by miR-144* with elevated expression in patients with pulmonary tuberculosis[J]. Mol Immunol, 2011, 48(9-10):1084-1090.[46] Chaveles I, Zaravinos A, Habeos I G, et al. MicroRNA profiling in murine liver after partial hepatectomy[J]. Int J Mol Med, 2012, 29(5):747-755.[47] Katsuura S, Kuwano Y, Yamagishi N, et al. MicroRNAs miR-144/144* and miR-16 in peripheral blood are potential biomarkers for naturalistic stress in healthy Japanese medical students[J]. Neurosci Lett, 2012, 516(1):79-84. |
| [1] | Du Feng, Xu Rui, Zhao Mengran, Ji Xu, Su Jiayi, Qiu Yuting, Zhu Shengtao, Wu Jing, Li Peng, Zhang Shutian. The role and mechanism of SOX4 in Helicobacter pylori-mediated gastric mucosal epithelial dysplasia [J]. Journal of Capital Medical University, 2025, 46(4): 644-653. |
| [2] | Liu Juan, Zhang Zheng, Li Peng. Clinical characteristics of autoimmune gastritis patients complicated with early gastric cancer [J]. Journal of Capital Medical University, 2025, 46(4): 670-675. |
| [3] | Liu Sifan, Yang Shuyue, Ji Xu, Zhang Zheng, Li Peng. Research on the role of gastric microbiome in the progression of gastric cancer [J]. Journal of Capital Medical University, 2025, 46(4): 682-687. |
| [4] | Liu Honglei, Yang Yingliang, Li Ronghao, Zhu Congmin, Zhang Xu. Application of artificial intelligence in the study of cancer diagnosis and treatment research [J]. Journal of Capital Medical University, 2025, 46(3): 395-400. |
| [5] | Gao Tianbo, Ge Yang, An Guangyu, Yao Jiannan, Jiang Yuliang, Liu Heshu, Yan Rui. Abnormal O-glycosylation mediated by the deficiency of molecular chaperone Cosmc or T-synthase regulates the expression of miRNAs in colorectal cancer exosomes [J]. Journal of Capital Medical University, 2025, 46(3): 401-409. |
| [6] | Liu Xiaoqian, Sun Kai, Wang Xiaolin, Zhao Qianqian, Wu Xiaoxiao, Shen Fangqi, Chen Xi, Tian Chenxu, Wu Di, Song Chunhua, Xu HongXia, Cong Minghua, Shi Hanping, Jia Pingping. Comparison of the prognostic value of 15 nutritional/inflammatory indicators in postoperative cancer patients [J]. Journal of Capital Medical University, 2025, 46(3): 410-419. |
| [7] | Li Yawei, Yang Shoubo, Yin Shuo, Li Wenbin, Chen Feng. Clinical efficacy analysis of hetrombopag in the treatment of cancer therapy included thrombocytopenia for germ cell tumors [J]. Journal of Capital Medical University, 2025, 46(3): 420-426. |
| [8] | Jiang Xue, Yu Panpan, Zeng Xiangjun, Guo Caixia. The effect of soluble receptor for advanced glycation end products on protein changes and function in cardiac ischemia-reperfusion based on proteomics [J]. Journal of Capital Medical University, 2025, 46(3): 503-510. |
| [9] | Jing Fang, Jing Chao. Micro RNA-338-3p regulates proliferation, apoptosis, migration, and invasion of ovarian cancer cells through ERBB2 [J]. Journal of Capital Medical University, 2025, 46(3): 527-537. |
| [10] | Meng Lingzhao, Qu Xiaopeng, Tao Pengyu, Yang Fan, Rao Yuansheng, Wang Ru, Fang Jugao. Application value of low-temperature plasma bipolar forceps in thyroid cancer surgery [J]. Journal of Capital Medical University, 2025, 46(3): 553-558. |
| [11] | Fan Yunpeng, Xiong Tianyu, Yang Kun, Liu Zhanliang, Jin Song, Xie Ping, Niu Yinong. Prediction model for extraprostatic extension of prostate based on MRI and clinical indicators [J]. Journal of Capital Medical University, 2025, 46(2): 243-251. |
| [12] | Xiong Tianyu, Zhao Youquan, Xie Ping, Niu Yinong. Advances in research on the interaction mechanisms between androgen receptor and PI3K/AKT pathways in prostate cancer [J]. Journal of Capital Medical University, 2025, 46(2): 269-282. |
| [13] | Wang Jing, Zhou Qiaoyun, Wang Muyu, Xiao Yu, Song Dongmei, Guo Yan, Xia Enlan, Li Tinchiu, Huang Xiaowu. Analysis of risk factors and establishment of a prediction model for endometrial cancer in postmenopausal bleeding [J]. Journal of Capital Medical University, 2025, 46(1): 143-149. |
| [14] | Tang Fan, Deng Mengqi, Miao Jinwei. The effect of HI-TOPK-032 on the proliferation of ovarian cancer based on a nude mouse model [J]. Journal of Capital Medical University, 2024, 45(4): 609-615. |
| [15] | Li Tiezheng, Xu Kaikai, Deng Yuqing, Wang Peihao, Qin Qi, Guo Kangshun, Wang Bingren, Chang Dong, Cui Yong. Analysis of the efficacy and safety of PD-1 inhibitors combined with chemotherapy in neoadjuvant treatment of locally advanced non-small cell lung cancer [J]. Journal of Capital Medical University, 2024, 45(4): 636-641. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||