Journal of Capital Medical University ›› 2013, Vol. 34 ›› Issue (1): 80-85.doi: 10.3969/j.issn.1006-7795.2013.01.015
Previous Articles Next Articles
ZHAO Haiping, LUO Yumin
Received:
2012-10-09
Online:
2013-02-21
Published:
2013-02-25
Supported by:
This study was supported by National Natural Science Foundation of China (81201028, 81071058, 30770743).
CLC Number:
ZHAO Haiping, LUO Yumin. Progress in studies of MicroRNA-144-associated diseases and related mechanism[J]. Journal of Capital Medical University, 2013, 34(1): 80-85.
[1] Ghelani H S, Rachchh M A, Gokani R H. MicroRNAs as newer therapeutic targets: A big hope from a tiny player[J]. J Pharmacol Pharmacother, 2012, 3(3): 217-227.[2] Zen K, Zhang C Y. Circulating microRNAs: a novel class of biomarkers to diagnose and monitor human cancers[J]. Med Res Rev, 2012, 32(2):326-348.[3] Rüegger S, Groβhans H. MicroRNA turnover: when, how, and why. Trends Biochem Sci[J]. Trends Biochem Sci, 2012, 37(10):436-446.[4] Bianchi N, Zuccato C, Finotti A, et al. Involvement of miRNA in erythroid differentiation[J]. Epigenomics, 2012, 4(1):51-65.[5] Lin He, Hannon G J. MicroRNAs: small RNAs with a big role in gene regulation[J]. Nature Reviews Genetics, 2004, 5(7): 522-531.[6] Dore L C, Amigo J D, Dos Santos C O, et al. A GATA-1-regulated microRNA locus essential for erythropoiesis[J]. Proc Natl Acad Sci USA, 2008, 105(9):3333-3338.[7] Papapetrou E P, Korkola J E, Sadelain M. A genetic strategy for single and combinatorial analysis of miRNA function in mammalian hematopoietic stem cells[J]. Stem Cells, 2010, 28(2):287-296.[8] Du T T, Fu Y F, Dong M, et al. Experimental validation and complexity of miRNA-mRNA target interaction during zebrafish primitive erythropoiesis[J]. Biochem Biophys Res Commun, 2009, 381(4):688-693.[9] Fu Y F, Du T T, Dong M, et al. Mir-144 selectively regulates embryonic alpha-hemoglobin synthesis during primitive erythropoiesis[J]. Blood, 2009, 113(6):1340-1349.[10] Rasmussen K D, Simmini S, Abreu-Goodger C, et al. The miR-144/451 locus is required for erythroid homeostasis[J]. J Exp Med, 2010, 207(7):1351-1358.[11] Yu D, dos Santos C O, Zhao G, et al. miR-451 protects against erythroid oxidant stress by repressing 14-3-3zeta[J]. Genes Dev, 2010, 24(15):1620-1633.[12] Sangokoya C, Telen M J, Chi J T. microRNA miR-144 modulates oxidative stress tolerance and associates with anemia severity in sickle cell disease[J]. Blood, 2010, 116(20):4338-4348.[13] Rasmussen K D, O'Carroll D. The miR-144/451eGFP allele, a novel tool for resolving the erythroid potential of hematopoietic precursors[J]. Blood, 2011, 118(11):2988-2992.[14] Leuenberger N, Jan N, Pradervand S, et al. Circulating microRNAs as long-term biomarkers for the detection of erythropoiesis-stimulating agent abuse[J]. Drug Test Anal, 2011, 3(11-12):771-776.[15] Liu L, Wang S, Chen R, et al. Myc induced miR-144/451 contributes to the acquired imatinib resistance in chronic myelogenous leukemia cell K562[J]. Biochem Biophys Res Commun, 2012, 425(2):368-373.[16] Girardi C, De Pittà C, Casara S, et al. Analysis of miRNA and mRNA expression profiles highlights alterations in ionizing radiation response of human lymphocytes under modeled microgravity[J]. PLoS One, 2012, 7(2):e31293.[17] Machová Poláková K, Lopotová T, Klamová H, et al. Expression patterns of microRNAs associated with CML phases and their disease related targets[J]. Mol Cancer, 2011, 10:41.[18] Whitman S P, Maharry K, Radmacher M D, et al. FLT3 internal tandem duplication associates with adverse outcome and gene- and microRNA-expression signatures in patients 60 years of age or older with primary cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study[J]. Blood, 2010, 116(18):3622-3626.[19] 赵晓鸿,赫捷.微小RNA与肿瘤[J].中华肿瘤防治杂志,2010,17(7):547-550.[20] Wang W, Peng B, Wang D, et al. Human tumor microRNA signatures derived from large-scale oligonucleotide microarray datasets[J]. Int J Cancer,2011, 129(7):1624-1634.[21] Wang P, Fu T, Wang X, et al. Primary, study of miRNA expression patterns in laryngeal carcinoma by microarra[J]. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi, 2010, 24(12):535-538.[22] Guled M, Lahti L, Lindholm P M, et al. CDKN2A, NF2, and JUN are dysregulated among other genes by miRNAs in malignant mesothelioma -A miRNA microarray analysis[J]. Genes Chromosomes Cancer, 2009, 48(7):615-623.[23] Rossing M, Borup R, Henao R, et al. Down-regulation of microRNAs controlling tumourigenic factors in follicular thyroid carcinoma[J]. J Mol Endocrinol, 2012, 48(1):11-23.[24] 魏任雄, 蔡林, 谭金海, 等. 骨肉瘤miRNA基因的差异性表达[J]. 中华实验外科杂志, 2009, 26(5): 636-638.[25] Gaedcke J, Grade M, Camps J, et al. The rectal cancer microRNAome-microRNA expression in rectal cancer and matched normal mucosa[J]. Clin Cancer Res, 2012, 18(18):4919-4930.[26] Kalimutho M, Del Vecchio Blanco G, Di Cecilia S, et al. Differential expression of miR-144* as a novel fecal-based diagnostic marker for colorectal cancer[J]. J Gastroenterol, 2011, 46(12):1391-1402.[27] Sureban S M, May R, Mondalek F G, et al. Nanoparticle-based delivery of siDCAMKL-1 increases microRNA-144 and inhibits colorectal cancer tumor growth via a Notch-1 dependent mechanism[J]. J Nanobiotechnology, 2011, 9:40.[28] Lee D Y, Jeyapalan Z, Fang L, et al. Expression of versican 3'-untranslated region modulates endogenous microRNA functions[J]. PLoS One, 2010, 5(10):e13599.[29] 曹婷,杨丽君,崔红.微小RNA在神经系统及髓鞘发生的调节作用[J].首都医科大学学报,2012,33(3):414-418.[30] Zhang H Y, Zheng S J, Zhao J H, et al. MicroRNAs 144, 145, and 214 are down-regulated in primary neurons responding to sciatic nerve transection[J]. Brain Res, 2011, 1383:62-70.[31] Rau C S, Jeng J C, Jeng S F, et al. Entrapment neuropathy results in different microRNA expression patterns from denervation injury in rats[J]. BMC Musculoskelet Disord, 2010, 11:181.[32] An J, Choi K P, Wells C A, et al. Identifying co-regulating microRNA groups[J]. J Bioinform Comput Biol, 2010, 8(1):99-115.[33] Persengiev S, Kondova I, Otting N, et al. Genome-wide analysis of miRNA expression reveals a potential role for miR-144 in brain aging and spinocerebellar ataxia pathogenesis[J]. Neurobiol Aging, 2011, 32(12):2316.e17-27.[34] Gu H, Li H, Zhang L, et al. Diagnostic role of microRNA expression profile in the serum of pregnant women with fetuses with neural tube defects[J]. J Neurochem, 2012, 122(3):641-649.[35] Zhou R, Yuan P, Wang Y, et al. Evidence for selective microRNAs and their effectors as common long-term targets for the actions of mood stabilizers[J]. Neuropsychopharmacology, 2009, 34(6):1395-1405.[36] Dinan T G. MicroRNAs as a target for novel antipsychotics: a systematic review of an emerging field[J]. Int J Neuropsychopharmacol, 2010, 13(3):395-404.[37] 施翔翔, 来丹丹, 章佳颖, 等. 心脏发育相关的微小RNA差异表达[J]. 中华医学杂志, 2009, 89(20):90-96.[38] Wang X, Zhu H, Zhang X, et al. Loss of the miR-144/451 cluster impairs ischaemic preconditioning-mediated cardioprotection by targeting Rac-1[J]. Cardiovasc Res, 2012, 94(2):379-390.[39] Zhang X, Wang X, Zhu H, et al. Synergistic effects of the GATA-4-mediated miR-144/451 cluster in protection against simulated ischemia/reperfusion-induced cardiomyocyte death[J]. J Mol Cell Cardiol, 2010, 49(5):841-850.[40] Ovcharenko D, Kelnar K, Johnson C, et al. Genome-scale microRNA and small interfering RNA screens identify small RNA modulators of TRAIL-induced apoptosis pathway[J]. Cancer Res, 2007, 67(22):10782-10788.[41] Huang F, Huang XY, Yan DS, et al. MicroRNA-144 over-expression induced myocytes apoptosis[J]. Zhonghua Xin Xue Guan Bing Za Zhi, 2011, 39(4):353-357.[42] Wu J H, Gao Y, Ren A J, et al. Altered microRNA expression profiles in retinas with diabetic retinopathy[J]. Ophthalmic Res, 2012, 47(4):195-201.[43] Karolina D S, Armugam A, Tavintharan S, et al. MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus[J]. PLoS One, 2011, 6(8):e22839.[44] Xie T, Liang J, Guo R, et al. Comprehensive microRNA analysis in bleomycin-induced pulmonary fibrosis identifies multiple sites of molecular regulation[J]. Physiol Genomics, 2011, 43(9):479-487.[45] Liu Y, Wang X, Jiang J, et al. Modulation of T cell cytokine production by miR-144* with elevated expression in patients with pulmonary tuberculosis[J]. Mol Immunol, 2011, 48(9-10):1084-1090.[46] Chaveles I, Zaravinos A, Habeos I G, et al. MicroRNA profiling in murine liver after partial hepatectomy[J]. Int J Mol Med, 2012, 29(5):747-755.[47] Katsuura S, Kuwano Y, Yamagishi N, et al. MicroRNAs miR-144/144* and miR-16 in peripheral blood are potential biomarkers for naturalistic stress in healthy Japanese medical students[J]. Neurosci Lett, 2012, 516(1):79-84. |
[1] | Yang Min, Yan Xiang, Liu Xijuan, An Guo, Ding Huirong, Cai Ying, Ge Huizheng. Establishment and characterization of immune cells in an orthotopic cell-derived xenograft mouse model of human lung cancer using multi-color flow cytometry [J]. Journal of Capital Medical University, 2023, 44(1): 99-106. |
[2] | Li Rongxue, Zhang Qian, Xing Jie, Sun Xiujing, Li Peng, Jiao Yue, Zhang Shutian. Diagnostic value analysis of endoscopic ultrasound for early colorectal cancer [J]. Journal of Capital Medical University, 2023, 44(1): 126-130. |
[3] | Wang Wenwen, Cai Yu, Jia Shuangshuang, Zhai Jianjun. Relationship between kinesin family proteins 2C and chemoresistance in ovarian cancer [J]. Journal of Capital Medical University, 2023, 44(1): 143-147. |
[4] | Wang Yun, Li Wenkun, Su Jiayi, Wang Yadan, Wu Jing. Application value of systemic immune-inflammation index in the screening of early colorectal cancer and precancerous lesions [J]. Journal of Capital Medical University, 2022, 43(5): 760-766. |
[5] | Zhang Jingtao, Wang Xinran, Han Binru, Qiang Ying, Liu Xueqi, Zhang Yi. Analysis of clinical characteristics and risk factors of arrhythmia after thoracoscopic pneumonectomy in elderly patients with lung cancer [J]. Journal of Capital Medical University, 2022, 43(4): 564-569. |
[6] | Liu Qun, Li Lina, Liu Jian, Miao Jinwei. SOX4 mediates TGF-β1 induced epithelial-mesenchymal transition to promote invasion and metastasis of ovarian cancer [J]. Journal of Capital Medical University, 2022, 43(3): 336-342. |
[7] | Zhao Yue, Ruan Xiangyan, Cheng Jiaojiao, Gu Muqing, Xu Xin, Wang Yuejiao. Breast cancer pathological diagnosis reveals correlation between progesterone receptor membrane component 1 and clinicopathological parameters [J]. Journal of Capital Medical University, 2022, 43(3): 350-356. |
[8] | Li Xue, Xing Jie, Zhang Qian, Li Peng, Lyu Fujing, Zhang Shutian. Diagnostic value of Japan Esophageal Society classification through narrow-band imaging technology combined with magnifying endoscopy for early esophageal cancer [J]. Journal of Capital Medical University, 2022, 43(2): 210-215. |
[9] | Su Jiayi, Liu Chuntao, Wang Tieshan, Li Wenkun, Yang Yi, Wu Shanshan, Li Peng, Wu Jing. Correlation between serum Helicobacter pylori antibody typing and gastric mucosal lesions [J]. Journal of Capital Medical University, 2022, 43(2): 216-220. |
[10] | Sun Can, Xing Jie, Zhang Xi, Sun Xiujing, Zhang Shutian. Clinical research of endoscopic submucosal dissection in low rectal early cancer [J]. Journal of Capital Medical University, 2022, 43(1): 34-37. |
[11] | Ma Zonghui, Zhang Qian, Xing Jie, Zhu Shengtao, Li Peng, Zhang Shutian, Sun Xiujing. Incidence and influence factors of endoscopic non-curative resection of early gastric cancer [J]. Journal of Capital Medical University, 2022, 43(1): 17-21. |
[12] | Yang Yi, Li Xue, Cheng Rui, Chen Wei, Chen Chuyan, Zhang Shutian. Advanced endoscopic imaging in diagnosis of early gastrointestinal cancer [J]. Journal of Capital Medical University, 2022, 43(1): 47-52. |
[13] | Si Hai, Liu Ran, Xiong Zhongyuan, Cao Bangwei. Correlation between the expression of cytokeratin in colorectal cancer and clinicopathological features [J]. Journal of Capital Medical University, 2022, 43(1): 127-131. |
[14] | Jiang Mingxin, Su Yao, Xiong Tianyu, Ye Xiaobo, Jin Song, Xing Nianzeng, Jin Mulan, Yang Mingfu, Niu Yinong. The outcome of cytoreductive radical prostatectomy for prostate cancer patients with bone metastasis [J]. Journal of Capital Medical University, 2021, 42(6): 967-972. |
[15] | Wang Mingshuai, Xiong Tianyu, Jiang Mingxin, Qian Xiaosong, Wang Sihao, Cui Yun, Niu Yinong. The effect of modified apical dissection and periurethral structure preservation in the immediate continence recovery after laparoscopic radical prostatectomy [J]. Journal of Capital Medical University, 2021, 42(6): 973-977. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||